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Chapter 1

Introduction

This report describes the work the author was part of during the first part of his
Ph.D. studies, together with ongoing work and directions for the next two years.

The main research interests of the author is the development of secure protocols
for protection of users privacy. This involves both coming up with new protocols and
investigating how already published results can be used to solve real world problems.
Another major research direction concerns security in pervasive computing, especially
with regards to privacy.

The results obtained so far are described in this report. The first result is a
protocol where a user can prove membership of a group without revealing his identity,
unless the user cheats and gives his identifying information to someone else. We call
this concept unclonable group identification [22].

On the pervasive computing side, the results include a report written for the
former danish council of IT security [42] describing current and future issues regarding
security in pervasive computing, where especially usability and privacy were found to
be the most important problems to solve. Currently the author is part a group under
the danish board of technology, which aims to describe the opportunities and threats
of using RFID, and also to provide suggestions on how to solve some of the problems
with RFID and privacy.

We have also published an article [7] at UbiComp 2003 about our work on solving
the usability issue of logging into a system multiple times during the day at a hospital.
Our solution is based on smart cards with cryptographic capabilities. A prototype of
the system was implemented as part of a larger framework.

Furthermore the author is involved in designing the security architecture as well
as looking at the software architecture side of the eu-DOMAIN platform [27] which is
an ambient intelligence service platform for automatic and context sensitive offering
and contracting of mobile web services across heterogeneous networks. The security
architecture is currently being designed and implemented and regarding the software
architecture we are in the early stages of writing an article about using domain models
in ambient intelligence. We will not directly describe eu-DOMAIN any further in this
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report. Primarily due to space constraints, but also since most of the work done by
the author is not interesting from a research perspective. Still, work done on security
in eu-DOMAIN has served as inspiration to future work and has highlighted issues
regarding security in pervasive computing. Whenever relevant, these issues will be
mentioned in the other sections.

Based on experiences within the area of pervasive computing, future work will
focus on designing protocols to solve some security issues in that area.

The rest of the report is structured as follows. In chapter 2 we describe how a new
efficient scheme for obtaining signatures on committed values can be used to provide
various forms of privacy protecting protocols such as group signatures, anonymous
credential systems and unclonable group identification. In chapter 3 we describe the
security problems in pervasive computing as well as our results related to that area
and finally, chapter 4 discusses future work.
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Chapter 2

Protocols for Privacy

Protection

In this chapter we describe how a new efficient scheme for obtaining signatures on
committed values can be used to provide various forms of privacy protecting proto-
cols such as group signatures, anonymous credential systems and unclonable group
identification.

2.1 Introduction to Privacy

When trying to solve privacy in larger systems it is important to realise that not all
privacy problems can be solved by cryptographic protocols alone, so before talking
about protocols for protecting privacy, we should make clear what kind of privacy we
want to protect.

Going back to basics we might ask ourselves: ”What is privacy”? Probably the
most well known treatment of privacy was done by Irwin Altman. He describes
privacy as a self-environment boundary regulation process based on dynamic, social,

dialectic normalisation of desired privacy to attained levels [2]. The definitions in [2]
are very wide and many researchers have used them to examine more closely what the
different dimensions of the privacy space are [10, 38, 41] in order to find out why we
care about privacy, how privacy violations occur and how we can protect our privacy
and the privacy of others.

In order to understand the privacy implications of systems, it is important to
realise that there are different dimensions of the privacy space. When talking about
privacy we are not talking about the whole privacy space, but rather some set of
phenomena that can be classified into subspaces. Lederer and Dey [38] have identified
the six dimensions seen in figure 2.1.

I will only briefly describe them here since my work is not about the definition of
privacy. Simply put, privacy violations occur because someone (the observer) gains
some information about another person (the subject) that the subject does not want
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System properties

Feedback and control
Surveillance vs. transaction

Actor relations

Interpersonal vs. institutional disclosure
Familiarity

Information types

Persona vs. activity
Primary vs. incidental content

Figure 2.1: The six dimensions of the privacy space.

to observer to have.
One of the ways by which privacy phenomena differ is how much control the

subject has over the disclosure of personal information and if the disclosure occurs
by surveillance of the subject or transactions performed by the subject. This is the
system properties. Another way to differentiate privacy phenomena is by the subjects
relation to the observer. Is the observer a person or an institution and is the subject
familiar with the observer. The third way in which privacy phenomena differs is by
the type of information disclosed. For example there is a huge difference between
disclosing information about the existence of a person or information about that
person. Further, the disclosure of sensitive information can have different implications
depending on whether that information was the primary or incidental content of the
disclosure.

It is important to realize that since we are talking about information, privacy
is strongly related to confidentiality. We might view privacy as confidentiality of
personal information which gives us a link between traditional data security and
privacy, and demonstrates that protocols and systems can indeed help to protect
some dimensions of the privacy space.

2.2 Signature Schemes

Digital signature schemes play an important role in many areas. Not only for allowing
users to sign documents electronically, but also for their use as building blocks to
build more complex protocols. Digital signature schemes were invented by Diffie
and Hellman [25], later formalised by Goldwasser, Micali and Rivest [30] and can be
realised if and only if one-way functions exist [44]. These general constructions are
not very practical, so over time, more efficient schemes have been designed. In the
random oracle model (see figure 2.2) other, and more efficient, schemes can be proven
secure, but since an ideal random function does not exist in the real world, these
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schemes cannot be proven secure in the plain model.

Random

oracle

model

Assumes the existence of a random function mapping {0, 1}∗ →
{0, 1}k for some fixed integer k, k > 0. In other words, when
the random oracle is queried with an input value, it returns a
uniformly random bit string of length k. If the query is repeated,
the output string is the same.

Plain model Assumes no random oracles or common parameters.

Figure 2.2: Definition of some cryptographic models.

Some schemes were proposed that were provably secure in the plain model, all
based on the strong RSA assumption. In 2002 Camenisch and Lysyanskaya proposed
a signature scheme based on the strong RSA assumption that could be used as a
building block for other applications and in 2004 they proposed the first signature
scheme that is provably secure in the plain model under the discrete-logarithm-based
assumption [14]. This scheme can also be used as building blocks in many protocols,
and since this is the scheme we have used, we will describe it in the following section.

In order for a signature scheme to be useful as building blocks for other protocols,
it should:

• Provide protocols for obtaining a signature on a committed message

• Provide protocols for proving in zero-knowledge the possession of a signature
on a committed message.

The following protocol has these properties as well as some additional ones, like
unconditional hiding of the message to be signed even if the user obtains a signature
on the same message, and proves knowledge of the same message, multiple times.

2.2.1 Signature scheme by Camenisch and Lysyanskaya

We start with some notation and preliminaries. We will use the notation from Ca-
menisch and Stradler [15] for proofs of knowledge of discrete logarithms. For instance,

PK{(i, j, k, l) : χ = αiβj ∧ χ̃ = α̃kβ̃l}

denotes a zero-knowledge proof of knowledge of integers i, j, k, l such that χ = αiβj

and χ̃ = α̃kβ̃l holds.
Assume that we have a setup algorithm that takes as input a security parameter

1k and outputs two groups Gp = 〈g〉 and Gp = 〈g〉 of prime order p = Θ(2k) that
have a non-degenerate bilinear map e : Gp × Gp → Gp. Bilinear means that for all
P,Q ∈ Gp, for all a, b ∈ Z, e(P a, Qb) = e(P,Q)ab and non-degenerate means that
there exist some P,Q ∈ Gp such that e(P,Q) 6= 1, where 1 is the identity in Gp.

This can be used to generate a signature scheme in the following way:
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Key generation Let (p,Gp,Gp, g,g, e) be the output of the setup algorithm. Choose
x ∈ Zp and y ∈ Zp and set X = gx and Y = gy. Then the secret key is
sk = (x, y) and the public key is pk = (p,Gp,Gp, g,g, e,X, Y ).

Signature On input message m, secret key sk and public key pk choose a random
a ∈ Gp and output the signature σ = (a, ay, ax+mxy).

V erification On input message m, public key pk and purported signature σ =
(a, b, c) check that the following equations hold

e(a, Y ) = e(g, b) and e(X, a) · e(X, b)m = e(g, c)

Proof that this is actually a signature scheme can be found in [14]. For this to
be useful as building blocks we need a obtain a signature on the message m without
revealing m. Note that if we give gm as input to the signer instead of m the algorithm
still works if we choose σ = (gr, ay, axMrxy), because axMrxy = ax+mxy. Of course
the user needs to prove knowledge of m in order for the signature scheme to remain
secure.

Second, we need a way to prove possession of a signature in zero-knowledge.
First we blind the signature σ by choosing random r, r′ ∈ Zp and setting σ̃ =

(ar
′

, br
′

, cr
′r) = (ã, b̃, c̃r) = (ã, b̃, ĉ) and then send this blinded signature to the veri-

fier. Both parties now compute vx = e(X, ã), vxy = e(X, b̃) and vs = e(g, ĉ) and then
carry out the following proof:

PK{(µ, ρ) : vρs = vxvxy
µ} (2.1)

The verifier accepts if this proof is correct and it holds that e(ã, Y ) = e(g, b̃). One
should note that this scheme (called scheme A in [14]) does not unconditionally hide
the message m because the value gm will be the same if the user tries to obtain a
signature on the same message. This is solved by signing an unconditionally hiding
commitment to the message instead. Some modifications is made to the scheme
in order to allow this. This modifies scheme is called scheme B. Scheme C is a
generalisation of scheme B that allows signing blocks of messages (m(0),m(1), ...,m(t)).
Below is a description of scheme C.

Key generation Let (p,Gp,Gp, g,g, e) be the output of the setup algorithm. Choose
x ∈ Zp, y ∈ Zp and for 1 ≤ i ≤ t, zi ∈ Zp. Set X = gx, Y = gy and for
1 ≤ i ≤ t, Zi = gzi . The secret key is sk = (x, y, z1, ..., zt) and the public key is
pk = (p,Gp,Gp, g,g, e,X, Y, {Zi}).

Signature On input message (m(0),m(1), ...,m(t)), secret key sk and public key pk
choose a random a ∈ Gp and set Ai = azi for 1 ≤ i ≤ t, b = ay, Bi =

(Ai)
y

for 1 ≤ i ≤ t, c = ax+xym
(0) ∏t

i=1A
xym(i)

i . Output the signature σ =
(a, {Ai}, b, {Bi}, c).

V erification On input message (m(0),m(1), ...,m(t)), public key pk and purported
signature σ = (a, {Ai}, b, {Bi}, c) check the following:

1. e(a, Zi) = e(g,Ai)
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2. e(a, Y ) = e(b, g) and e(Ai, Y ) = e(g,Bi)

3. e(X, a) · e(X, b)m
(0) ∏t

i=1 e(X,Bi)
m(i)

= e(g, c)

Exactly as in scheme A, the signer doesn’t need to know the message. The
only place where the message is present is in the computation of c in the signature,
but if the user instead of m(0),m(1), ...,m(t) sends a commitment on the form M =

gm
(0) ∏t

i=1 Z
m(i)

i then we can still compute c = axMaxy = ax+xym
(0) ∏t

i=1 A
xym(i)

i .
If t = 0 this scheme is equivalent to scheme A and with t = 1 it is equiva-

lent to scheme B. Like for scheme A, there exist a protocol for proving possession
of a signature in zero-knowledge. First we blind the signature σ by choosing ran-
dom r, r′ ∈ Zp and setting σ̃ = (ar

′

, {Ari }, b
r′ , {Bri }, c

r′r) = (ã, ˜{Ai}, b̃, ˜{Bi}, c̃
r) =

(ã, ˜{Ai}, b̃, ˜{Bi}, ĉ) as in scheme A and send it to the verifier, but this time in addi-
tion to computing vx, vxy and vs, both parties also compute V(xy,i) = e(X, B̃i) and
then carry out the following proof protocol:

PK{(µ(0), ..., µ(t), ρ) : vρs = vx(vxy)
µ(0)

t
∏

i=1

(

V(xy,i)

)µ(i)

} (2.2)

The verifier accepts if this proof holds and e(ã, Zi) = e(g, Ãi), e(ã, Y ) = e(g, b)
and e(Ãi, Y ) = e(g, B̃i). The latter ensures that the Ai’s, Bi’s and c were formed
correctly.

2.3 Anonymous Credential Systems

A credential system is a system where a user can get access to some resource by
presenting a credential showing that he is authorised to do so. In the real world,
credentials are often drivers license or passports, but in the digital world it will often
take form of a digital signature. An anonymous credential system consists of users
and organisations, where organisations only know the users by pseudonyms. Different
pseudonyms of the same user cannot be linked, yet a user can prove possession of a
credential issued to a pseudonym to another organisation where the user is known by
a different pseudonym, without revealing any more than the fact that the user has
a credential. Possession of a credential can be demonstrated an arbitrary number
of times and these demonstrations cannot be linked to each other. It should be
practically impossible for users to forge credentials even if they cooperate. Also even
if organisations team up, they should not be able to find out anything about a user,
in particular different pseudonyms belonging to the same user cannot be linked.

Anonymous credential systems, also called pseudonym systems, were first intro-
duced by Chaum [17] and in order to realise them it is sufficient to have a commitment
scheme, a signature scheme and protocols for [39]

1. Proving equality of two committed values

2. Obtaining a signature on a value without revealing this value to the signer

3. Proving knowledge of a signature on a committed value
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(2) and (3) follow from the signature schemes above, whereas (1) can be realised
if we use the Pedersen commitment scheme [43].

2.3.1 A Simple Anonymous Credential System

In this section we will show how scheme B can be used to construct a simple anony-
mous credential system. Such a system will have two operations: Grant which grants
a credential to a user and Verify which allows an organisation to verify the credential.
This simple system will not have the notion of pseudonyms and will also only allow
an organisation to issue one kind of credential. Furthermore this credential will not
be able to contain attributes.

The general idea is the following: The user U chooses a secret key K which will
be his identity, and a credential issued by an organisation O is a signature on this
secret key.

First run the setup algorithm for the signature scheme to obtain the groups, the
public and the secret key.

Grant U chooses a secret K ∈ Zp and r ∈ Zp at random and sends M = gKZr1 to
O. O signs (K, r) and returns the signature σ = (a,A1, b, B1, c) to U .

V erify U and O carries out the proof protocol 2.2 and furthermore O checks that
e(ã, Z1) = e(g, Ã1), e(ã, Y ) = e(g, b) and e(Ã1, Y ) = e(g, B̃1).

Security of this system follows from security of the signature scheme as well as the
unconditional hiding property of the Pedersen commitment scheme. The reason that
this signature scheme is particulary suited for digital credentials is that it is easy to
compute a different signature on the same message.

2.3.2 More Advanced Features

Besides handling pseudonyms as described above there are other interesting properties
that would be nice to have in a credential system. One of them is for a credential
to store attributes. For example a user could have a credential stating year of birth,
current address, social security number, etc and then being able to prove that his
age is greater than 18 without revealing any other information. Using scheme C the
organisation can encode these attributes in the exponents and proof of knowledge of
a signature can be extended to prove properties of these exponents, for example:

PK{(µ, ρ) : vρs = vxvxy
µ, µ ≥ 18} (2.3)

Proving this is not trivial, but can be done by making a commitment cµ to µ

using an integer commitment scheme [23], proving that the value committed to in cµ
is equivalent to the value contained in 2.3 and finally use cµ to show that the value
committed to is greater than 18 [9].

A complete credential system with all these and more properties was developed
by Camenisch and Lysyanskaya [12].
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2.4 Group Signatures

To illustrate the use of this signature scheme as a building block, We will describe
how it can be used to build group signature schemes. A group signature scheme is a
scheme that allows members of a group to sign messages anonymously on behalf of
the group, but when a dispute arises a designated revocation manager can revoke the
anonymity of a group member.

A group signature scheme can be constructed from signature scheme A, an en-
cryption scheme that is secure against adaptively chosen ciphertext attacks and a
protocol for proving that a committed value is contained in a ciphertext. Such a
scheme consists of the following five procedures:

1. A key generation procedure that produces a public key for the group as well as
some secret keys for the group- and revocation manager

2. A join protocol that allows users to join the group

3. A sign protocol that allows members of the group to sign messages

4. A verification protocol that can verify that a message was indeed signed by a
member of the group

5. A protocol the revocation manager can use to reveal the identity of a signer

We will describe how these procedures can be implemented. This idea is taken
from [14].

Key generation The public key of the group manager is the public key of signature
scheme A, that is pkGM = (p,Gp,Gp, g,g, e,X, Y ) and his secret key is skGM =
(x, y). The public key of the revocation manager is the public key of the Cramer-
Shoup encryption scheme [21] in the group Gp, that is pkR = (h,y1,y2,y3)
where h is chosen at random in Gp, y1 = gx1hx2 , y2 = gx3hx4 and y3 = gx5 ,
where the secret key of the revocation manager is skR = x1, ..., x5 ∈ Zp.

Join The user chooses a secret key k ∈ Zp, sets M = gk, sends M to the group
manager and proves knowledge of k. The group manager replies with a scheme
A signature (a, b, c) on k and stores P = e(M, g) along with the identity of the
user.

Sign To sign a message m the user computes P = gk = e(M, g) and a blinded
version of the signature (ã, b̃, ĉ) as in the previous sections. Next the user
encrypts P under pkR which means choosing u ∈ Zp at random and setting
c1 = gu, c2 = hu, c3 = y1

uP and c4 = y2
uy3

uH(c1 ||c2||c3). The group signature
consists of ((ã, b̃, ĉ), (c1, c2, c3, c4),Σ) where Σ is the following proof-signature
made using for example the Fiat-Shamir heuristic [28]:

Σ = SPK{(µ, ρ, ν) : vρs = vxvxy
µ, c1 = gν , c2 = hν ,

c3 = y1
νgµ, c4 =

(

y2y3
uH(c1 ||c2||c3)

)ν

}(m)
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Verify Validate Σ and check that e(ã, Y ) = e(g, b̃).

Open The revocation manager decrypts (c1, c2, c3, c4) and obtains P which identi-
fies the group member.

This scheme is secure in the random oracle model assuming the DDH assumption
holds in G and it’s easy to see why: Breaking the anonymity of a user requires
breaking the encryption, since (ã, b̃, ĉ) are just random values and Σ is derived from
an honest verifier zero-knowledge proof. If it is possible to produce a signature that
cannot be opened as belonging to a specific user, then the adversary can use rewinding
to extract a forged signature, thereby breaking the signature scheme.

2.5 Unclonable Group Identification

We have used the signature scheme from [14] to construct a protocol to provide what
we have called unclonable group identification. The following sections will contain an
introduction to this concept, the motivation for doing this and a description of the
protocol.

2.5.1 Introduction and Motivation

The problem of verifying that a given user is a member of a certain group, while
ensuring that the user’s personal identity is not revealed has been the focus of much
research. Particular instances of this include group signatures [4, 14, 37] and anony-
mous credential systems [12] as we have already seen some examples of. However, in
some applications a dishonest user has an interest in giving away some information
that allows another user to identify as him as a member of the group - such as pass-
words or secret keys. The security problems implied by such a scenario have not been
given much attention so far in the literature. It has been suggested to discourage this
identity sharing by forcing users to either give away all their information or nothing,
but here we are interested in cases where a dishonest user does in fact want to give
everything away.

As a motivating example, consider the issue of software protection: It is well
known that one of the strongest motivating factors in getting people to register as
software users is if this enables some functionality that cannot be accessed without
registration (and payment). This works particularly well, if the functionality requires
access to the vendor’s website, since then unauthorized access to the functionality
cannot be achieved only by reverse engineering the software. In the case of games, for
instance, the opportunity to play against others may be available to only registered
users, and only through the vendor’s website.

Verifying that a user is registered may be done in many different ways. We want a
solution that would protect the users privacy, but at the same time doing as much as
possible to protect against attacks where a user “clones” himself by handing a copy
of his personal data (passwords, secret key(s), etc.) to another person in order to get
the benefits of two registrations while only paying for one. Furthermore we want a
solution where a user registers once and can then connect anonymously an unlimited
number of times with the same key material.
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A simple observation is of course that we can only detect a cloning attack if the user
and his clone actually connects to the vendors website. Another simple observation
is that we cannot detect a cloning attack where the user connects, leaves and then
the clone connects, since the server can’t distinguish between the user and his clone.
What we can hope to detect, however, is if both the user and the clone connect so
that they are on the site simultaneously, since this is exactly what cannot occur if the
user has been honest. Not only do we wish to detect this attack, but we also wish
to learn the identity of the user who cloned himself so we can either punish him or
ban him from the system. This scenario is also of practical relevance. For instance,
the case of a user who buys one copy of a game and distributes it to all his friends so
they can play against each other online, is exactly a case where a number of clones
would want to be connected simultaneously.

An unclonable identification scheme is an identification scheme where honest users
can identify themselves anonymously as members of a group, but where clones of
users can be detected and have their identities revealed if they identify themselves
simultaneously. We have constructed a protocol that solves this problem.

First we looked at existing primitives to see if they could be used to solve the
problem. One idea is to use group signatures [4, 14, 37] where the users identify
themselves by signing a message chosen by the group manager, for example his current
system time. This gives the users anonymity, but does not protect against cloning. If
we want to protect against cloning, we would need a group signature scheme where
it was possible to find out if two different signatures on the same message were from
the same user. This does not follow from the standard definition of group signatures,
and is actually false for known schemes, since these are probabilistic and produce
randomly varying signatures even if the message is fixed.

Another possibility is to use E-cash schemes [18, 11] where each user receives
some electronic coins and uses them to ”pay” for access to the site. Cloning would be
equivalent to double spending which can be detected even if the users are not logged
on at the same time, but there are some issues with this. First of all, users would
have to come back at regular intervals for more coins which would reveal information
about how often they connect. Second, the cloning attack can not be detected if the
user is careful not to spend the same coins which his clone is going to spend.

We have designed a protocol that solves this problem based on the signature
scheme by Camenisch and Lysyanskaya [14].

2.5.2 Protocol Description

In this section I will give an overview of the protocol and the ideas behind it. For a
full description with all the details, see our paper [22].

Preliminaries

There are two main ingredients in our protocol. The first ingredient is the signature
scheme by Camenisch and Lysyanskaya and the second ingredient is a new technique
for proving that an element in a group is of form gψ where ψ is a pseudorandom value
computed from a committed key.
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The protocol runs in ”phases” where each phase is uniquely identified by a number
α. An honest user must prove his membership of the group at most once in each phase.
If he does it more than once in the same phase, he reveals his identity to the group
manager. If he fails to prove his membership when required, he will be disconnected.
However, if the user clones himself, then in order for both the user and his clone to
stay connected at the same time, they must eventually both prove membership of the
group during the same phase, which is equivalent to the same user trying to prove his
membership of the group twice during the same phase.

First we introduce some general tools. Consider a group Gp of prime order p
where p = 2q+1 and q is a prime. Let Gq denote the unique subgroup of Z∗

p of order
q. Consider the case where where a prover knows exponents x1, ..., xt ∈ Zp such that
β = αx1

1 · · ·αxt

t for publically known β, α1, ..., αt ∈ Gp. We are interested in allowing
a prover P to prove knowledge of the xi’s to a verifier V . That is, we want:

PK{(x1, ..., xt) : β = αx1
1 · · ·αxt

t } (2.4)

The following Σ-protocol can be used to prove this:

1. P chooses r1, ..., rt ∈ Zp uniformly at random and sends to V τ =
∏t
i=1 α

ri

i .

2. V chooses a random challenge ε ∈ Zp.

3. P responds with zi = ri+εxi mod p for i = 1..t. V checks that
∏t
i=1 α

zi

i = τβε.

Recall the special soundness property of Σ-protocols: If the protocol is executed
twice with the same first message τ and different challenges ε, ε′, the verifier can
extract the prover’s secret xi’s. Imagine that the xi’s contain the prover’s identity
and that the first message τ will always be the same in the same phase α of the
protocol. This will allow the verifier to learn the identity of a dishonest user.

Now consider the following change to the protocol. Instead of choosing the ri’s at
random in the first message, let P choose them according to a pseudorandom function
ΨK(i, α, b), where K ∈ Zq is a secret key known only to P , α is a public input, i is
a number and b is a bit. For implementing this pseudorandom function we choose
ΨK(i, α, b) = H(i, α, b)K where H is a hash function that outputs elements in Gq .
This is a strong pseudorandom function in the random oracle model, assuming that
the DDH assumption holds in Gq . The only problem is that this function outputs
values in Gq where the ri’s were chosen in Zp. This can be resolved by letting the
exponents be chosen as the difference between two pseudorandom values which allows
us to hit all of Zp. The modified Σ-protocol looks like this:

1. P sets ri = ΨK(i, α, 0) and si = ΨK(i, α, 1) and sends to V τ =
∏t
i=1 α

ri−si

i .

2. V chooses a random challenge ε ∈ Zp.

3. P responds with zi = ri− si + εxi mod p for i = 1..l. V checks that
∏t
i=1 α

zi

i =
τβε.
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We must allow P to show that he has followed the specific algorithm for construct-
ing the ri’s and si’s. The first step is for P to commit to these values. Let η, λ be
random elements of Gp fixed in advance. P will make commitments comi = ηriλωi

and com′
i = ηsiλω

′

i , for i = 1..t and random ωi, ω
′
i. We can now ask P to prove that

he committed to the correct values, that is, execute

PK{(ri, si, ωi, ω
′
i, i = 1..t) : τ =

t
∏

i=1

αri(α−1)si , (2.5)

comi = ηriλωi , com′
i = ηsiλω

′

i , i = 1..t}

The Σ-protocol for this is a standard variant of the one presented above. Assume
that P has committed to his secret key K in some non-standard way, namely as

d = gγ
Kδr

hu for publically known g, h ∈ Gp and γ, δ ∈ Gq . P now executes the
following proof

PK{(K, r, u, ωi, ω
′
i, i = 1..t) : d = gγ

Kδr

hu, (2.6)

comi = ηΨK (i,α,0)λωi ,

com′
i = ηΨK (i,α,1)λω

′

i , i = 1..t}

which proves that he has used the committed key to generate the ri’s and si’s. A
Σ-protocol for this can be found in our paper.

A Protocol for Unclonable Group Identification

We will now show how a protocol for unclonable group identification can be realised.
First we run the setup algorithm from section 2.2.1 with a small modification,

namely that we choose p = 2q + 1 where q is also a prime and then we let Gq
denote the unique subgroup of Z∗

p or order q. The public key is, as the name implies,
public and the group manager keeps the secret key. The group manager also chooses
η, λ ∈ Gp and γ, δ ∈ Gq to be used for the commitment scheme.

When a user U registers with the group manager, he makes a commitment cU =
γKδrU mod p to a random secret key K ∈ Zq, sends that commitment to the group
manager and proves knowledge of K using the standard protocol for proving know-
ledge of discrete logarithms:

PK{(K, rU ) : cU = γKδrU }

The group manager signs cU using scheme A and returns the signature σ = (a, b, c)
on cU to U . The value cU is considered the user’s identity to the group manager
whereas (K, rU , a, b, c) serves as the membership certificate.

For proving membership of the group, U must prove knowledge of a signature
generated by the group manager on a value known to him, here cU . This is the same
as doing the proof of knowledge of a signature. Using the notation from section 2.2.1
this means proving:
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PK{(cU , ρ) : vs
ρ = vxv

cU

xy }

We can use the modified Σ-protocol for proof 2.4 to prove this. In this proof we
have, after adapting the notation, the following first message:

τ = vr1−s1xy vr2−s2s

where the ri’s and si’s are chosen as:

r1 = ΨK(1, α, 0), r2 = ΨK(2, α, 0), s1 = ΨK(1, α, 1), s2 = ΨK(2, α, 1)

U must now commit to these values, like this:

com1 = ηr1λω1 , com2 = ηr2λω2 , com′
1 = ηs1λω

′

1 , com′
2 = ηs2λω

′

2

and prove that they are correct with respect to τ using the Σ-protocol for proof 2.5.
This means executing the following proof:

PK{(r1, s1, r2, s2, ω1, ω
′
1, ω2, ω

′
2) : τ = vr1−s1xy vr2−s2s ,

com1 = ηr1λω1 , com2 = ηr2λω2 ,

com′
1 = ηs1λω

′

1 , com′
2 = ηs2λω

′

2

Finally U must prove that each commitment contains a pseudorandom value of

the correct form. Since v−1
x = vcU

xy v
−ρ
s = vγ

KδrU

xy v−ρs is a commitment to K this means
proving:

PK{(K, rU ,−ρ, ω1, ω
′
1, ω2, ω

′
2) : v−1

x = vγ
KδrU

xy v−ρs ,

com1 = ηr1λω1 , com2 = ηr2λω2 ,

com′
1 = ηs1λω

′

1 , com′
2 = ηs2λω

′

2}

This can be done using the Σ-protocol for proof 2.6.

Once during each phase, the group manager will look for runs of the protocol
where the first messages τ are identical. When this occurs he can use the special
soundness property to extract cU which will be the identity of a cheating user.

One problem is that since the user is completely anonymous, even though we catch
him cheating in one phase, we have no way of identifying that user in a later phase.
This can be solved using dynamic accumulators [13]. Simply put a dynamic accumula-
tor is a hash function where you can add and remove values from the hash. By looking
at the hash you learn nothing about which values are stored in the accumulator, but
there is a zero-knowledge proof to prove that a given value is in the accumulator,
without revealing that value. All it requires is that we have a commitment to the
value we want to prove is in the accumulator.

We could extend our protocol in the following way: When a user registers and
sends cU as his identity, the group manager adds it to the accumulator. In each phase
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we would require a user to prove that cU is in the accumulator. This is fairly easy
since we already have a commitment to cU in the protocol, namely v−1

x which is all
the group manager needs to check this. If the user’s identity is not in the accumulator
he is denied access. A cheating user will reveal cU and then the group manager can
remove cU from the accumulator.
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Chapter 3

Security and Pervasive

Computing

3.1 Introduction to Pervasive Computing

Pervasive computing deals with a near future where computers are everywhere, which
is made possible by the technological development whereby chips are becoming smaller
and cheaper all the time. Applications of pervasive computing could be things such
as swivel chairs in offices that remember height settings, intelligent fridges that know
whether or not the milk is too old, under-floor heating that is automatically turned
on when the forecast is for cold weather, jackets with in-built mp3 players, sports
clothing with in-built heart rate monitors, glasses with built in display devices and
intelligent work clothes.

Today there is much focus on a few areas where we will see pervasive computing
first. In the healthcare sector we might find things like bandages that can report
how the injury is doing, video conferences with doctors, so patients can be treated at
home and doors that open automatically, so the rescue services can enter the home
of a patient with insulin shock. In the retail sector there are a large number of
examples such as checkouts without cashiers, where the shopping trolley is pushed
through a scanner that registers the products, smart product labels that can be
used for providing a warning to people with allergies or for sorting waste and much
more. For defence applications we will see things like unmanned planes, tanks and
operating rooms, weapons that can only be fired by the rightful owner, etc. All these
applications are based on many new units with built in computers and communication
capabilities, of which we have probably only seen the tip of the iceberg.

According to Norman Cohen pervasive computing has a number of distinguishing
characteristics [33]:

• Computing is spread throughout the environment and yet gracefully integrated
with it.

• Users, devices, and services are often mobile.
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• Information appliances are becoming increasingly available.

• Communication is made easy between individuals, between individuals and
things, and between things.

The most prominent representative today is the RFID tag, which is a small pas-
sive devices with an antenna, that will transmit a unique number when it is in the
proximity of a reader, but the list of pervasive computing technologies that is in the
public domain is already long, and includes such things as mobile phones, PDAs and
much more.

3.2 Security Problems in Pervasive Computing

In this section we look at some of the security problems we have identified in pervasive
computing as well as some solutions people have been working on.

3.2.1 Background

In 2004 we were asked by the former danish council of IT security to do a report
about security in pervasive computing. This report, finished later in 2004 [42], is a
non-technical approach focusing on identifying problems instead of providing solutions
in forms of specific recommendations regarding technologies to use.

The analysis was done based on scenarios describing a possible use of comput-
ers in the near future. Some of them were taken from the eu-DOMAIN project [27]
whereas others were taken from an EU think-tank that tried to imaging how comput-
ers would affect our daily lives ten years from now. Based on these we classified the
scenarios into three groups called ID-in-everything, services-in-everything and agents-
in-everything. In short, ID-in-everything considers the use of devices that can only
provide an identifier, such as RFID tags. Services-in-everything considers devices that
in some way assist the user in his daily actions. Today PDAs, mobile phones, digital
cameras, etc. are examples that would fit into this category. Agents-in-everything are
the more futuristic scenarios where software agents loaded with our personal prefer-
ences are helping us in our daily lives, making decisions on our behalf, ordering food,
negotiating contracts, etc.

A security analysis aims to identify threats and rate them based on how serious
the threat is. This is done according to how serious the consequences of the realisation
of the given threat is, and the likelihood of the threat happening. Such an analysis
depends heavily upon the technology used and empirical studies, but since our work
is based on future technologies and imagined use, such input is unavailable to us. The
risk assessment was therefore done based on the current use of different technologies
as well as a qualified guess as to how serious a given threat might be.

A threat is always made by some actor against an asset. As described in OC-
TAVE [1] a threat can be characterised by:

• The value of the asset

• Access to the asset (physical or logical)
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• The actor threatening the asset

• The motive of the actor

• The outcome of the threat if it is realised by the actor

It would be tedious to characterise every single threat according to this, but ne-
vertheless these items were still used as the background for our analysis.

When it comes to technology that will be everywhere, one type of actor deserves
special attention and that is the regular user. Threats by the regular user are not
described in the scenarios, but often the regular user is the source of security failures
because they do not adhere to the security policy, for example by writing down his
password on a piece of paper and leaving that piece of paper on his desk. Protecting
against this problems requires education of the users, but more importantly, systems
that are easy to use. If the user was able to log on to the computer simply by sitting
down in front of it, he probably wouldn’t have written down his password. In the
near future we will no longer be able to choose not to use computers, which makes
usability an even more important issue.

3.2.2 Identified Problems

We will briefly discuss the security problems of these three categories as one. Primarily
due to space constraints, but also because they are in fact very similar. The more
futuristic scenarios have some additional security problems, but the most important
and relevant ones are already present in the two first groups of scenarios. We will look
at which threats there are to the three security categories confidentiality, integrity and
availability. For a full discussion of the security issues, see the report [42].

Confidentiality There are basically two types of confidential information in the
scenarios: (1) The identity of some device and (2) the data present on, or
generated by, a device. Generally all threats to confidentiality resulting from
(1) are privacy violations which by many has been described as the greatest
problem of pervasive computing. To protect against privacy violations occurring
from disclosure of identity, there are the following three options:

• Anonymity (or confidentiality of identity)

• Protection against location tracking (or confidentiality of location)

• Protection against data aggregation (or combination of otherwise harmless
information)

In many situations (e.g. with RFID tags) physical objects are assigned an
identity, usually represented as a number. This identity number is then used to
map a physical object to a database with more information about that object.
This gives us three threats against privacy: Reading identity numbers from
objects, abusing existing databases containing mappings between numbers and
objects and a combination of the above. Since these identity numbers are often
transmitted over wireless channels without any security, they are easy to obtain.
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A RFID tags will reveal its identity number to any reader in the proximity of
the tag, a GSM phone transmits its IMEI number when roaming between base
stations, a laptop with a wireless network card transmits a unique identifier
every time it sends out a packet on the network, etc. This problem is enhanced
by the fact that the range from which this identity number can be read is far
greater than the normal communication distance of the device.

An item with a RFID tag bought in a store can be used to track the customer
around in the store as well as around the city. In most cases tracking an unknown
RFID tag will only provide information about the location or activity, but by
data aggregation it is possible the persona behind the activity can be disclosed
as well. This kind of threat usually comes from cooperations that use this to
track the behaviour of customers, their shopping preferences, etc. This kind
of privacy violations normally cause users to distrust systems or organisations,
and in the long term can neither be in the interest of the organisation or the
users.

With access to the database mapping identity codes to information about the
object they are attached to, privacy violations can be realised by people without
the ability to read identity numbers from devices on the street, as long as they
have access to the database. Probably the best example is the supermarket
loyalty programs, where the supermarket keeps the entire shopping record of its
customers in a database, along with timestamps of when they did their shopping.
They don’t need to be present in the supermarket to abuse that information
(even though they most likely are in this scenario).

Combining the two scenarios above gives an even greater risk of privacy vio-
lations. Just reading some identity number once, will allow you to find more
information by looking it up in the database. Taking the previous example, just
reading some random identity number from a shopping bag on the street gives
you information about who is carrying the bag, what else he is carrying, where
he lives, where he did his shopping, how often he does it, how much money he
spends in that specific supermarket, etc.

Many people respond to this threat by refusing to use new technology, but
the technology has good uses as well, so simply not using it is not in our best
interest as a society. The important thing is that the user should be in control
of his own personal information and that he can rely on technology to protect
his information, and not a privacy statement of a corporation.

Most of the current talk about revealing identity numbers of devices are related
to RFID, but there are many other technologies with similar problems, and here
designing a good and privacy protecting protocol on top of them might not be
enough. Lower layers in the protocol stack might leak information such as the
MAC address of network card, IP address, Bluetooth ID, location of the user
based on GSM triangulation and signal strength, etc.

If we look at devices with more capabilities than just supplying an identity
number there are additional threats. First we have the risk of disclosing infor-
mation through transactions performed by the device. Since personal data are
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not only stored in a database, but on the device itself, theft of the device might
also disclose personal information. In case of medical data there might even be
laws stating how these data must be protected.

Integrity When RFID tags are used to identify objects it becomes a problem that
they are easy to spoof or replace with other tags, for example if the RFID tag
is used as a price tag. If they are used to identify people, abuse of them can
easily lead to identity theft.

With devices acting as sensors we must trust that the data we receive actually
comes from the right sensor, so in some cases we need strong authentication from
a device to a reader, but also from a user towards a device since unauthorised
access to a device could violate the integrity of that device or data on it. We
might also need a reader to authenticate towards a device so the device knows
who it is sending information to.

An interesting problem regarding authentication is that we will sometimes have
the scenario where a user authenticates towards a device and the device must
somehow authenticate as the user towards another device. If the device that the
user authenticates to directly is compromised, how much trust can the second
device have in the authentication? Even more interesting: Can we somehow
make the authentication works even if the device is compromised and what are
the requirements for this?

Availability Some RFID protocols are highly vulnerable to a denial of service at-
tack by a tag that tries to simulate all possible tags at the same time [35]. If
RFID tags are used as anti-theft devices they can be placed in special designed
packages that prevent a reader from communicating with the tag. This has in
fact a dual purpose, as it is also a low-tech way to prevent the problems related
to confidentiality of identity numbers regarding RFID tags.

For more capable devices running out of battery poses a significant problem.
With hundreds of small devices at home it is infeasible (and expensive) to mon-
itor their battery level and replace batteries as necessary. Most small devices
are made to preserve battery power by going into sleep mode when not in use,
but in some cases it is possible to deprive these devices of sleep by sending data
to them, effectively reducing their battery life from a couple of years to a few
days or even hours. Losing password or access tokens to a system is also a
denial-of-service risk, which is a real issue when more and more non-technical
users start using this technology. In case of a central device controlling other
devices, malfunction of that device will have far reaching consequences for all
attached devices, and measures must be taken to make it easy to replace such
a device if it should fail.

What is hidden from the discussion above, is the role that the regular user plays,
but it is mentioned between the lines. Systems for only disclosing identity to selected
parties, authenticating based on a password, etc. must all be well controlled by the
user, otherwise the technical solutions have no merit. With the number of small
devices we expect people to buy and use in the future, security features must be easy
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to use, cause no inconvenience for the user and must be enabled by default. To see
what happens if this is not the case, check the current status on WiFi security. Also,
these devices are small computers and will inherit all the security problems personal
computers have today such as malicious code, viruses, worms, etc. if we are not
careful.

The key to user acceptance of pervasive computing is to solve the privacy issues
surrounding it, and where privacy can be achieved by technical means, it must be
designed so even non-technical users get the benefits of privacy. In the literature it
is generally assumed that there is always a trade-off between usability and security.
While this is certainly true in many systems, we do not believe that is has to be true
a priori. Privacy is not the only security issue for pervasive computing, but it is the
most important one for the regular users of these systems and devices.

A related topic which has not been mentioned so far, but is relevant especially
for the agents-in-everything scenarios, is the issue of trust. If we are expected to let
software agents with access to personal data interact with foreign agents we have never
interacted with before, there must be some way of deciding what level of interaction
we will allow. This is not an issue we have looked at, but it has been studied in other
projects such as SECURE [45].

3.2.3 Previous Work

Most of the security issues in pervasive computing are not different from the well-
known problems of today. Authentication, protection of confidential data and en-
suring the integrity of transmitted data are all known problems, but these problems
might not be the same in all pervasive computing scenarios. Take authentication as
an example. There is a difference between a scenario where one organisation certifies
devices and only devices from that organisation are allowed to communicate with each
other, and a scenario where devices must be able to communicate between different
administrative and organisational entities that shares no information.

Another issue is the devices that must be supported. Many of them will be small
devices without the computational resources to perform some of the heavy calculations
needed for e.g. public key cryptography, and even if it is possible to equip these devices
with such capabilities, many will refrain from doing so due to cost issues. Also they
will have limited, if any, input devices, making seemingly trivial tasks such as typing
in a password impossible.

There are no rule on how pervasive computing should be implemented, although
most literature that deals with security in pervasive computing are centred around
the scenario of small devices forming ad-hoc networks and communicating peer-to-
peer. This was, however, not the case in the projects we have worked on. In the
EPCiR project [31] a home is equipped with a central component called a gateway
which takes care of all communication between devices and the outside world. In
eu-DOMAIN [27] we also have gateways, but here gateways are only managed from
a central place where all gateways are connected. Others have discussed the notion
of a PAN (Personal Area Network) where a central component on a person (such
as a PDA) handles communication with nearby devices and provides connectivity to
the rest of the world. All of these architectures have their security problems and
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somewhat different requirements to the solutions.

The rest of this section is about some problems with security in pervasive com-
puting that various people have been working on.

If we want to do secure communication we need some cryptographic key material,
so of course some research has been done on how to distribute key material. Anderson
et. al. [3] suggest looking at a different threat model for wireless sensor networks.
Normally, in security analysis, it is assumed that an attacker can eavesdrop on all
communication going on, but actually this attacker rarely exist in the real world
where many devices spread over a relatively small area (such as a house) need to
agree on key material. They propose a scheme where a device starts by broadcasting
a symmetric key with low power in the clear. If it doesn’t receive a reply from
another device, it increases the power and tries again. This is called whisper-mode
and is supposed to limit the range from where the key can be eavesdropped. When
all devices have agreed on a key with one of their neighbours, they start mixing their
keys. Assume we have three nodes A, B, and C and three keys KAB, KAC and KBC

which are used to protect communication between respectively AB, AC and BC. If
A wants a stronger key between himself and B he asks B and C to negotiate a new
key based on the previous key between A and B in such a way that if KAB was secure
before, then the new key K ′

AB is also secure, but if KAB was compromised, then K ′
AB

is still secure if KAC and KBC are secure. If this is done at regular intervals by all
devices, an adversary has to be able to monitor all traffic to keep track of the keys.
If he misses just one key-exchange message, then after a short while he will no longer
have access to any keys in the network.

Another possibility is key pre-distribution, which simply means that the keys
must be put on the devices before they are deployed and can for example be used in
combination with the previous method.

Another idea is to use channels that are authentic and hard to eavesdrop [6].
This could for example be by requiring physical contact between devices to do the
key-exchange.

Stajano [46] proposed a method where the device gets a key from the first device
it receives data from when it is turned on. This method is called the resurrecting
duckling principle since it mimics the fact that a duckling will accept the first living
being it sees as it’s mother. Vaudenay describes a protocol [48] where a short and
short-lived authenticated string can be used to generate a larger secure key that
remains secure even if the short key is guessed.

Despite these results, there is still some way to solving all practical security prob-
lems regarding key exchange in pervasive computing. Relying on limited transmission
range is not that useful. It has been shown with both WiFi and Bluetooth that with
the right equipment it is possible to eavesdrop on the wireless communication from
far greater distances than what the normal operational range is. WiFi has an opera-
tional range of around 100 meters, yet has been eavesdropped from a distance of 201
km [24]. Bluetooth has a range of around 10 meters, but has been eavesdropped from
over 1000 meters away [19]. Also the solutions by Anderson et. al. are not suited
for all types of scenarios such as when you are in a hostile environment and need a
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secure communication channel between a few devices. Since symmetric keys cannot
be used to authenticate individual devices this type of key exchange also has other
limits. It is more suited to sensor networks than to scenarios involving authentication
of individual devices. The resurrecting duckling principle also has some problems. It
is easy for an adversary to setup a device with a stronger signal so the new device
will recognize it as its mother duck. How many have tried using the neighbours WiFi
access point by mistake? Still, many of the ideas from the resurrecting duckling prin-
ciple are indeed useful. Key pre-distribution works, but how to do it in a user-friendly
manner is another issue. Also if many devices need to communicate in an ad-hoc net-
work using symmetric keys, they must each store a key for each device in the network
which can be a problem for some devices. Finally authentic and secure channels are
hard to come by, and using physical contact might not always be a feasible solution.
A good solution will probably combine one or more of these approaches with good
usability.

Since the most talked about issue regarding pervasive computing today is the issue
of RFID tags, it should come as no surprise that some research has also been done
in that area, most of it on authentication of RFID tags and readers. Obviously the
best way to avoid leaking the identity of a RFID tag to every reader it passes, is to
authenticate the reader first, but since RFID tags are very limited in computational
resources this is no trivial task. An interesting observation is that RFID tags share
the same lack of computing power with another computationally weak device, namely
human beings. Therefore it has been suggested to use human authentication protocols
for RFID tags [36]. Such a protocol called HB+ was proven secure, but under a threat
model that was too restricted, and was later broken [29]. In another article [26] an
authentication protocol is proposed based only on XOR and hash functions. Not only
is this protocol useful for authentication, but can also be used to delegate ownership
(and thereby the ability to read information from) the RFID tag to other parties.
For example a store can transfer ownership of a RFID tag to the customer when he
buys the item, instead of killing the tag and preventing the customer from taking
advantage of the benefits of having RFID enabled goods at home. Unfortunately
key management and usability can become a serious issue here since it is based on
symmetric keys. Using pseudonyms as a model for privacy control with RFID tags
is discussed in [34] and is based on anonymous credential systems, but has none of
the features present in these systems. Another protocol for delegating control over a
RFID tag that also uses pseudonyms to provide anonymity is proposed in [40]. The
idea of allowing the user to control his own privacy is further studied in [5] which
gives a practical model for user control of privacy based on rules and regulations, the
type of data being protected and the users personal privacy preference. The last one
is actually worth keeping in mind since different users might desire different levels of
privacy.

3.3 Context-Aware User Authentication

In this section we present a brief overview of our paper titled Context-Aware User

Authentication - Supporting Proximity-Based Login in Pervasive Computing” [7]. For
a full description of our solution, including the authentication protocol and security
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analysis, we refer to the paper.

3.3.1 Background

In our paper titled Context-Aware User Authentication - Supporting Proximity-Based

Login in Pervasive Computing” we explore computer security in pervasive computing
with focus on user authentication. We implemented a solution based on smartcards for
user authentication and a context-awareness system for verifying the users’ location.
We also implemented a fall-back strategy in case the context-awareness system was
down.

As mentioned before, there is often an inherent tradeoff between usability and
security. User authentication mechanisms tend to be either secure, but less usable, or
very usable, but less secure. It was our aim to try and combine the two standpoints
and suggest a context-aware user authentication mechanism that is very usable as
well as sufficiently secure for use in settings, where security matters, like a hospital
environment.

User authentication can be based on three things. Something the user has (e.g.
a smartcard), something the user knows (e.g. a password), or something the user is

(i.e. a physiological trait) [47]. Traditionally if you combine some of these things, you
get a more secure authentication mechanism than by just using one of them. Our
design of a user authentication mechanism is based on supplementing well-known user
authentication mechanisms with knowledge about the location of the user.

In a study of the use of Electronic Patient Records (EPR) at a large metropolitan
hospital, we observed a number of usability problems associated with user authenti-
cation [8]. The EPR was accessed through PCs distributed within the hospital, and
it had a traditional login system with usernames and passwords. Thus, whenever
a clinician should access patient information he had to log in and out on different
PCs, so it was not uncommon for a nurse to log in 30 times a day. Because this was
a highly cumbersome thing to do in a hectic environment, workarounds were estab-
lished. For example, users would avoid logging out, enabling them to return to the
PC without logging in later; passwords were shared among users and made very easy
to remember (’1234’ was the most used password at the hospital); and users would
often hand over user sessions to one another, without proper logout and login. Hence
what might seem like a sufficiently secure system, was turned into a highly insecure
system, because of obvious usability problems.

Even though this EPR system can in no way can be termed as pervasive technol-
ogy, our study of its use has highlighted how essential user authentication is to the
design of pervasive computing support for medical work in hospitals.

The Centre for Pervasive Healthcare [16] is involved in actively designing and
developing pervasive computing technologies for use in hospitals. A central compo-
nent in this effort is a basic runtime infrastructure, which supports Activity-Based
Computing (ABC) [20]. The basic idea of activity-based computing is to represent
a user’s (work) activity as a heterogeneous collection of computational services, and
make such activities available on various stationary and mobile computing equipment
in a hospital. Clinicians can initiate a set of activities, and access these on various
devices in the hospital. For example, a nurse can use the computer in the medicine

25



room to get some medicine, and later when giving this medicine to the patient she
can restore the patient and medicine data on the display in the hospital bed. Central
to this is clearly that users need to be authenticated on every device they want to use,
and easy login is hence a core challenge in the concept of activity-based computing.
If login was a problem with standard PC’s that would be used 30 times a day, it is
sure to be an issue here as well.

3.3.2 Requirements for a Pervasive Computing User Authen-

tication Mechanism

Based on existing research within pervasive computing, our studies of medical work,
and our experimental design effort with end-users, we can list the following require-
ments for a user authentication mechanism in a pervasive computing environment.

• Proximity-based – Work at a hospital is characterised by busy people who are
constantly moving around, and are engaged in numerous activities in parallel.
Easy and fast login was thus deemed a fundamental prerequisite for the success
of a distributed, pervasive computing infrastructure, embedded in walls, floors,
tables, beds, etc. The usability goal in our workshops reached a point where
the user should do nothing to log in – he should simply just use the computer,
and the computer would know who he was.

• Secure – Clinical computer systems store and handle sensitive, personal health
data for many patients. It is therefore of utmost importance that these systems
are protected from unauthorized access. Hence, pervasive computer systems in
a healthcare environment require secure user authentication.

• Active gesture – We experimented with a login mechanism that would automat-
ically transfer a user’s on-going session to a display near him – much like the
’Follow-me’ application using the Bat system [32]. This, however, turned out
to be a less useful design. The problem was that often a clinician would enter
a room, where numerous computing and display devices would be available.
For example in a radiology conference room, there would be several wall-based
displays, a wide range of desktop computers, and an interactive table where
images can be displayed and manipulated. It was unclear from monitoring the
location of the user, which of such displays he would like to use, or whether he
wanted to use a computer at all. Therefore the authentication mechanism must
be based on an active gesture near the display or devices that the user wants to
use.

• Support for logout – During our experiments we discovered that the process of
logging out a user is equally important. Clinicians would often have to hurry
on, and would simply walk (or run) away from an ongoing session. In this case,
automatic logout was deemed important.
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3.4 Our Solution

There are three key principles in our design of a context-aware user authentication
mechanism. First, it uses a physical token used for active gesturing and as the crypto-
graphic basis for authentication. For this we use a smartcard running Java. Second,
it uses a context-awareness system to verify the location of the user, and to log out
the user when he leaves the computer(s) in a certain place. Third, it contains ’fall-
back’ mechanisms, so that if either of the two components in the system falls out,
the user authentication mechanism switches to other mechanisms. If the context-
awareness infrastructure is unreachable for any reason, the user is requested to enter
his password when trying to log in. If the token cannot be accessed for any reason,
the user is requested to enter both his username and password, as usual. Hence, in
case of system failure the system is still usable without compromising the security
completely. Note that here passwords could easily be replaced by something else, like
a biometric identification.

Each client is equipped with a card reader and the authentication protocol is
executed every time a user waves his card in front of it, since the card supports
wireless communication.

The system architecture for the context-awareness infrastructure consists of the
following main components:

• Context Monitors – A range of hardware and/or context data specific processes,
which register changes in the environment. Examples of context monitors are
location monitors based on monitoring RFID tags attached to items in the
environment, or WLAN monitors that try to locate WLAN-based equipment.
Other monitors might gather information about temperature, planned activities
in users’ personal calendars, or try to identify people in a room based on their
voices.

• Context Server – The Context Server contains a simple data structure that stores
information about Entities in the environment. Entities are basically people,
places, or things, but this structure is extensible and all kinds of context data
can be stored by implementing some simple interfaces.

By combining a context-awareness sub-system with a personal smartcard, we have
designed and implemented a proof-of-concept of a proximity-based user authentication
mechanism, which is both user-friendly and secure. One could argue that it seems
like an unnecessary effort to implement a context-awareness system in an organization
just to help users log in. However, on one hand we argue that providing easy login is
essential to maintaining a smooth workflow in a hospital and on the other hand, we
envision that a context-awareness sub-system is already in place in a future hospital
for many other reasons, and we have demonstrated how such a system can help realize
the vision of proximity-based user authentication.
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Chapter 4

Future Work

While the work done so far covers quite different areas such as cryptographic protocols,
security in pervasive computing, software architecture and implementation work, the
overall theme of the author’s work, is solving real world security problems based on
technical, rather than administrative, solutions. The plans for for the next two years
are going to be more focussed on fewer specific areas, but still within that overall
theme.

The main research area is going to be security in pervasive computing. The
following sections will describe ideas for future work.

4.1 Authentication and Privacy

Today the most representative technology for pervasive computing is RFID tags where
privacy concerns are the dominating problem, because it is easy to get a unique iden-
tifier from an RFID tag, but RFID tags are not the only devices with that problem.
Mobile phones and Bluetooth devices share the same problem. We would like to in-
vestigate various solutions to this privacy problem. For RFID tags it could involve
coming up with authentication protocols for devices with few computational resources,
but for other devices we might not be so constrained by the lack of computational
resources, which opens up for the use of other kinds of cryptographic protocols for
protecting privacy, which may not only be able to protect against passive listening,
but also against leaking personal identifiers in a transaction involving the user. This
is related to phishing attacks mentioned in section 4.3.

When an RFID tag has to decide whether or not to reveal its identity to a reader,
it is only interested in authenticating the reader, but when RFID tags are used to
identify some item or person, we need to identify the tag as well. Can both be solved in
one protocol, or do we need different tags depending on which kind of authentication
we need? Of course we can implement both on a device with lots of computing
power, but could it be more cost-effective to make two different tags depending on
their intended use? An extension of this (or perhaps an alternative approach) could
be to use pseudonyms. For example an RFID tag could have one identity when read
in a store and another at the user’s home, which would allow full use of all the benefits
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of an RFID tag with none of the disadvantages. Of course an important part of such
a protocol would be that it can be made easy to use and to require very little key
management from the user, since the users will in most cases be non-technical.

There are already some protocols out there for authenticating RFID tags. The
most interesting one is a protocol called HB+ since it can be proven secure under the
”Learning Parity with Noise” hardness assumption, where some of the other protocols
are just bit-fiddling with no proof of security. The problem with HB+ is that it is
not secure under a realistic threat model. If we can somehow fix HB+ we would
have an efficient and secure authentication protocol for RFID tags. Also, looking at
other human authentication protocols and try to adapt them to use on RFID tags is
something we would also like to look at.

4.2 Using Humans as Secure Channels

A problem we encountered during the eu-DOMAIN project was how to securely add
small devices to some infrastructure. More specific we have a gateway which is some
powerful device (think a PC) at the users home and the user buys some device at the
supermarket and brings it home. How can we associate that device with the gateway
such that they can communicate securely and that the device can be sure that it is
talking to the gateway and the other way around. There are a few properties of this
scenario which makes it different from other seemingly similar scenarios.

1. The device has no a priori information about the gateway

2. The gateway has no a priori information about the device

3. The device has no keyboard or display device

4. The device might have very limited computing power compared to the gateway

5. Both gateway and device are operated by a non-technical user

Finding solutions to this problem seems like another interesting research area
which we would like to look into. Some work has been done in that area regarding
sensor networks, but this scenario is not about ad-hoc communication and we don’t
have the same amount of devices, so we cannot directly use their results. Most likely
we will need to use humans as some kind of secure channel.

One idea could be that the user reads some code from the device and enters it
on the gateway. A nice property would be that the user should not remember a full
128-bit key, but something smaller, like a PIN, and yet after the channel is set up, the
security should no longer rely on the PIN being kept secret. Serge Vaudenay proposes
a protocols with this property in [48] which require exponentiations of large numbers
and uses four rounds of communication. It would be interesting to see if it is possible
to come up with something that solves the same problem in a more efficient way. Not
only designing the protocol, but considering the whole scenario including a realistic
threat model (for example Vaudenay allows delivery on the communication channel
to be maliciously stalled, cancelled, or replayed, which might be an unnecessary re-
quirement if the channel is a human) and questions like what should be stored on the
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device from the manufacturer, what are the minimal properties the device needs, etc.
We also have hardware devices with an 8 MHz CPU and 10K RAM to implement
and test this on.

4.3 Secure Operations on Insecure Devices

This area is a question of performing secure computation on a insecure device using
some trusted code. Assume that we have a small hardware device with some secret
information and trusted code, and we want to plug it into an computer we don’t trust
and perform some operation using the trusted device. As a motivating example, think
of a device holding the secret key to the user’s digital signature, but the document to
be signed is located and displayed on an untrusted computer. The hardware device
can sign the document, but the problem is how to ensure that what the computer
displays on the screen and later submits to some third party is actually the document
that the user thinks he signed. This looks like an authentication problem where we
need to authenticate the hardware device towards the user over an insecure channel,
but with an interesting twist: It needs to be verifiable by a human being. Solving
this problem can lead to interesting solutions to real-world problems. First of all
this will promote the use of pervasive computing as users will be able to securely sign
documents using any computer when they travel. This can also be used as secure login
to homebanking systems where the system is not compromised if some malicious code
is running on the user’s computer.

Still it does not directly solve a common problem with authentication these days,
namely phishing, where a user is tricked to revealing personal information to a ma-
licious third party, because he thinks he is talking to someone else. Currently most
solutions to phishing attacks try to put stronger requirements on authenticating the
user such as two-factor authentication, which doesn’t really solve the problem. Au-
thenticating the recipient of the user’s personal information works better, but the
best idea would be to simply not reveal any information that an attacker can use to
perform the identity theft. This might or might not be a problem solveable by having
the before-mentioned hardware device, but it is worth looking into how such a device
could also be used to also solve problems related to phishing and identity theft. A
significant portion of the research here will be figuring out the minimum requirements
for the device, as well as how to do the authentication of the device towards a human
being.
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