
Batch Verification of Short Signatures

Jan Camenisch
IBM Research - Zürich
jca@zurich.ibm.com

Susan Hohenberger
Johns Hopkins University

susan@cs.jhu.edu

Michael Østergaard Pedersen
Miracle A/S

mop@miracleas.dk

August 11, 2011

Abstract

With computer networks spreading into a variety of new environments, the need to au-
thenticate and secure communication grows. Many of these new environments have particular
requirements on the applicable cryptographic primitives. For instance, a frequent requirement
is that the communication overhead inflicted be small and that many messages be processable
at the same time. In this paper, we consider the suitability of public key signatures in the latter
scenario. That is, we consider signatures that are 1) short and 2) where many signatures from
(possibly) different signers on (possibly) different messages can be verified quickly. Prior work
focused almost exclusively on batching signatures from the same signer.

We propose the first batch verifier for messages from many (certified) signers without random
oracles and with a verification time where the dominant operation is independent of the number
of signatures to verify. We further propose a new signature scheme with very short signatures, for
which batch verification for many signers is also highly efficient. Combining our new signatures
with the best known techniques for batching certificates from the same authority, we get a fast
batch verifier for certificates and messages combined. Although our new signature scheme has
some restrictions, it is very efficient and still practical for some communication applications.

1 Introduction

As the world moves towards pervasive computing and communication, devices from vehicles to
dog collars will soon be expected to communicate with their environments. For example, many
governments and industry consortia are currently planning for the future of intelligent cars that
constantly communicate with each other and the transportation infrastructure to prevent accidents
and to help alleviate traffic congestion [16, 50]. Raya and Hubaux suggest that vehicles will transmit
safety messages every 300ms to all other vehicles within a minimum range of 110 meters [49], which
in turn may retransmit these messages.

For such pervasive systems to work properly, there are many competing constraints [16, 50,
37, 49]. For one, there are physical limitations, such as a limited spectrum allocation for specific
types of communications and the potential roaming nature of devices, that require that messages
be kept very short and (security) overhead be minimal [37]. Yet for messages to be trusted by
their recipients, they need to be authenticated in some fashion, so that entities spreading false
information can be held accountable. Thus, some short form of authentication must be added.
Furthermore, different messages from many different signers may need to be verified and processed

1

quickly (e.g., every 300ms [49]). Another possible constraint that these authentications remain
anonymous or pseudonymous, we leave as an exciting open problem.

In this work, we consider the suitability of public key signatures to the needs of pervasive
communication applications. Generating one signature every 300ms is not a problem for current
systems, but transmitting and/or verifying 100+ messages per second might pose a problem. Using
RSA signatures for example seems attractive as they are verified quickly, however, one would need
approximately 3000 bits to represent a signature on a message plus the certificate (i.e., the public
key and signature on that public key) which might be too much for some applications (see Section
8.2 of [49]). While many new schemes based on bilinear maps can provide the same security with
significantly smaller signatures, they take significantly more time to verify (e.g., [9, 6, 13, 53]).
Thus, it is not immediately clear what the proper tradeoff between message length and verification
time is for many pervasive communication applications. However, in some applications, there is
evidence that doing a small amount of additional computation is more advantageous than sending
longer messages. For example, Landsiedel, Wehrle, and Götz showed that for applications using
Mica2 sensors transmitting data consumes significantly more battery power than keeping the CPU
active [40]. Barr and Asanović note that the wireless transmission of just a single bit, can use more
than 1000 times the energy required for a 32 bit computation [3].

1.1 Our Contributions

Now, if one wants both, short signatures and short verification times, it seems that one needs to
improve on the verification of the bilinear-map based schemes or try to reduce the signature size
of a fast signature scheme such as RSA. In this paper we take the first route and investigate the
known batch-verification techniques and to what extent they are applicable to bilinear-map based
schemes, whereas for example Gentry provides a method for compressing Rabin signatures in [28].
We note that while these two techniques are not mutually exclusive (in fact Gentry mentions that
the compressed Rabin signatures can be aggregated [28]), compressing signatures has not been the
focus of our work. More precisely, the main contributions of this paper are:

1. We instantiate the general batch verification definitions of Bellare, Garay, and Rabin [4] to the
case of signatures from many signers. We also do this for a weaker notion of batch verification
called screening and show the relation of these notions to the one of aggregate signatures.
Surprisingly, for most known aggregate signature schemes a batching algorithm is provably
not obtained by aggregating many signatures and then verifying the aggregate.

2. We present a batch verifier for the Π-IBS scheme [19]. (More precisely, this is the IBS scheme
implicitly defined by the Chatterjee-Sarkar hierarchical IBE [19] and it can also be viewed as a
generalized version of the Boyen-Waters IBS [11] as we will discuss later.) To our knowledge,
this is the first batch verifier for a signature scheme without random oracles. Let z be the
additional security parameter required by the Π-IBS scheme. When identities and messages
are k bits, viewed as z chunks of k/z bits each, our algorithm verifies n Π-IBS signatures
using only (z + 3) pairings. Individually verifying n signatures would cost 3n pairings.

3. We present a new signature scheme, Π-Sig, derived from the Camenisch-Lysyanskaya signature
scheme [13], which is secure in the random oracle model. Π-Sig signatures require only one-
third the space of the original CL signatures– on par with the shortest signatures known [9]
–, but users may only issue one signature per period (e.g., users might only be allowed to sign

2

one message per 300ms). We present a batch verifier for these signatures from many different
signers that verifies n signatures using only three total pairings, instead of the 5n pairings
required by n original CL signatures. Yet, our batch verifier has the restriction that it can
only batch verify signatures made during the same period. Π-Sig signatures form the core of
the only public key authentication, known to us, that is extremely short and highly efficient
to verify in bulk.

4. Often signatures and certificates need to be verified together. This happens implicitly in
IBS schemes. To achieve this functionality with the Π-Sig signature scheme, we can issue
signatures with Π-Sig and certificates with the Boneh, Lynn and Shacham scheme [9]. Then
we can batch the Π-Sig signatures (on any message from any signer) using a new batch verifier
proposed herein; and we can batch the BLS certificates (on any public key from the same
authority) using a known batch verifier that can batch verify n signatures from the same
signer using only two pairings.

1.2 Batch Verification Overview

We start by a some historical remarks and then later present the schemes relevant to this paper in
more detail.

Batch cryptography was introduced in 1989 by Fiat [26] for a variant of RSA. Later, in 1994,
Naccache, M’Räıhi, Vaudenay and Raphaeli [48] gave the first efficient batch verifier for DSA
signatures, however an interactive batch verifier presented in an early version of their paper was
broken by Lim and Lee [43]. In 1995 Laih and Yen proposed a new method for batch verification of
DSA and RSA signatures [39], but the RSA batch verifier was broken five years later by Boyd and
Pavlovski [10]. In 1998, Harn presented two batch verification techniques for DSA and RSA [32, 33]
but both were later broken [10, 35, 36]. The same year, Bellare, Garay and Rabin took the first
systematic look at batch verification [4] and presented three generic methods for batching modular
exponentiations, called the random subset test, the small exponents test and the bucket test which
are similar to the ideas from [48, 39]. They showed how to apply these methods to batch verification
of DSA signatures and also introduced a weaker form of batch verification called screening. Later,
Cheon and Lee introduced two new methods called the sparse exponents test and the complex
exponents test [22], which they claim to be about twice as fast as the small exponents test. In 2000,
Boyd and Pavlovski published some attacks against different batch verification schemes, mostly ones
based on the small exponents test and related tests [10]. These attacks do not invalidate the proof of
security for the small exponents test, but rather show how the small exponents test is often used in
a wrong way. However, the authors also describe methods to repair some broken schemes based on
this test. In 2001, Hoshino, Masayuki and Kobayashi [34] pointed out that the problem discovered
by Boyd and Pavlovski [10] might not be critical for batch verification of signatures, but only when
using batch verification to verify for example zero-knowledge proofs. In 2004 Yoon, Cheon and Kim
proposed a new ID-based signature scheme with batch verification [21], but their security proof is
for aggregate signatures and does not meet the definition of batch verification by Bellare et al. [4];
hence their title is somewhat misleading. Other schemes for batch verification based on bilinear
maps were proposed [17, 54, 55, 56] but all were later broken by Cao, Lin and Xue [15]. In 2006,
a method was proposed for identifying invalid signatures in RSA-type batch signatures [42], but
Stanek [52] showed that this method is flawed. Shacham and Boneh gave a practical application
of batch verification by using a modified version of Fiat’s batch verifier for RSA to improve the

3

efficiency of SSL handshakes on a busy server [51]. Ferrara, Green, Hohenberger, and Pedersen
gave performance measurements for the schemes herein, and also showed how to batch verify other
types of signatures, such as group and ring signatures [25]. Law and Matt pointed out some IBS
schemes that batch well, and also give methods for identifying invalid signatures in a batch [41].

Bellare, Garay and Rabin Testing Techniques. Let g generate a group of prime order.
In 1998, Bellare, Garay and Rabin described some tests [4], for verifying equations of the form
yi = gxi for i = 1 to n. Obviously if one just multiplies these equations together and checks
if
∏n
i=1 yi = g

Pn
i=1 xi , it is easy to produce two pairs (x1, y1) and (x2, y2) such that the product

of them verifies correctly, but each individual verification does not, e.g., by submitting the pairs
(x1 − α, y1) and (x2 + α, y2) instead. Let us review three fixes to this broken initial proposal.

Random Subset Test: The idea here is to pick a random subset of these pairs (xi, yi) and mul-
tiply them together, hoping to split up the pairs that were specifically crafted to cancel each
other out. Repeating this test ` times, picking a new random subset every time, results in
the probability of accepting invalid pairs being 2−`.

Small Exponents Test: Instead of picking a random subset every time, one can choose exponents
δi of (a small number of) ` bits and compute

∏n
i=1 y

δi
i = g

Pn
i=1 xiδi . Bellare et al. prove that

this test results in the probability of accepting a bad pair being 2−`. The size of ` is a tradeoff
between efficiency and security and hence it is difficult to give an exact recommendation for
it. It all depends on the application and how critical it is not to accept even a single invalid
signature. For just a rough check that all signatures are correct 20 bits seems reasonable. In
a higher security setting we should probably be using around 64 bits.

Bucket Test: This method is even more efficient than the small exponents test for large values
of n. The idea is to repeat a test called the atomic bucket test m times. The atomic bucket
test works by first putting the n instances one wants to verify into M buckets at random.
This results in M new instances of the same problem, which are then checked using the small
exponents test with security parameter m. After repeating the atomic bucket test m times,
the probability of accepting a bad pair in the original n instances is at most 2−m.

1.3 Efficiency of Prior Work and our Contributions

Efficiency will be given as an abstract cost for computing different functions. We begin by discussing
prior work on RSA, DSA, and BLS signatures mostly for single signers, and then discuss our new
work on Π-IBS, Π-Sig and BLS signatures for many signers. Note that Lim [44] provides a number of
efficient methods for doing m-term exponentiations and Granger and Smart [31] give improvements
over the naive method for computing a product of pairings, which is why we state them explicitly.

m-MultPairCostsG,H s m-term pairings
∏m
i=1 e(gi, hi) where gi ∈ G, hi ∈ H.

m-MultExpCostsG(k) s m-term exponentiations
∏m
i=1 g

ai where g ∈ G, |ai| = k.
PairCostsG,H s pairings e(gi, hi) for i = 1 . . . s, where gi ∈ G, hi ∈ H.
ExpCostsG(k) s exponentiations gai for i = 1 . . . s where g ∈ G, |ai| = k.
GroupTestCostsG Testing whether or not s elements are in the group G.
HashCostsG Hashing s values into the group G.
MultCosts s multiplications in one or more groups.

4

If s = 1 we will omit it. Throughout this paper we assume that n is the number of message/signature
pairs and `b is a security parameter such that the probability of accepting a batch that contains an
invalid signature is at most 2−`b .

RSA* is a modified version of RSA by Boyd and Pavlovski [10]. The difference to normal RSA is
that the verification equation accepts a signature σ as valid if ασe = m for some element α ∈ Z∗m of
order no more than 2, where m is the product of two primes. The signatures are usually between
1024 − 2048 bits and the same for the public key. A single signer batch verifier for this signature
scheme with cost n-MultExpCost2

Zm
(`b) + ExpCostZm

(k), where k is the number of bits in the public
exponent e, can be found in [10]. Note that verifying n signatures by verifying each signature
individually only costs ExpCostnZm

(k), so for small values of e (|e| < 2`b/3) the naive method is a
faster way to verify RSA signatures and it can also handle signatures from multiple signers. Bellare
et al. [4] presents a screening algorithm for RSA that assumes distinct messages from the same
signer and costs 2n+ ExpCostZm

(k).

DSA** is a modified version of DSA from [48] compatible with the small exponents test from [10].
There are two differences to normal DSA. First there is no reduction modulo q, so the signatures
are 672 bits instead of 320 bits and second, individual verification should check both a signature σ
and −σ and accept if one of them holds. Messages and public keys are both 160 bits long. Using the
small exponents test the cost is n-MultExpCostG(`b) + ExpCost2

G(160) + HashCostnG + MultCost2n+1

multiplications. This method works for a single signer only.

Π-IBS is an IBS scheme derived from the Chatterjee and Sarkar HIBE scheme [19] for which we
provide a batch verifier without random oracles in Section 4. An interesting property of this scheme
is that the identity does not need to be verified separately. Identities and messages are k bits divided
into z logical chunks, each of k/z bits, where z is a security parameter, and a signature is three
bilinear group elements. The computational effort required depends on the number of messages
and the security parameters. Let M = n-MultExpCostGT

(`b) + n-MultExpCost3
G(`b) + PairCost3

G,G +
GroupTestCost3n

G + MultCost3 and refer to the table below for efficiency of the scheme.

n ≤ 2z : M +2n-MultPairCostG,G + z-MultExpCost2n
G (kz) + ExpCost2n

G (`b)
n > 2z : M +z-MultPairCostG,G + ExpCost2n

G (kz + `b) + MultCostzn

The naive application of Π-IBS to verify n signatures costs PairCost3n
G,G + z-MultExpCost2n

G (kz) +
MultCost4n. Also note that in many security applications we do not need to transmit the identity
as a separate parameter, as it is already included in the larger protocol. For example, the identity
may be the hardware address of the network interface card.

BLS is the signature scheme by Boneh, Lynn and Shacham [9]. We discuss batch verifiers for BLS
signatures based on the small exponents test. For a screening algorithm, aggregate signatures by
Boneh, Gentry, Lynn and Shacham [8] can be used. The signature is only one group element in
a bilinear group and the same for the public key. For different signers the cost of batch verifica-
tion is n-MultPairCostG,G +n-MultExpCostG(`b) + PairCostG,G + ExpCostnGT

(`b) + GroupTestCostnG +
HashCostnG, but for single signer it is only n-MultExpCost2

G(`b) + PairCost2
G,G + GroupTestCostnG +

HashCostnG.

5

Π-Sig is a new variant of Camenisch and Lysyanskaya signatures [13] presented in Section 5 designed
specifically to enable efficient batch verification. The signature is only one bilinear group element
and the same for the public key. Batch verification costs n-MultExpCost2

G(`b)+n-MultExpCostG(|w|+
`b)+PairCost3

G,G +GroupTestCostnG +HashCostnG, where w is the output of a hash function. However,
the scheme has some additional restrictions.

Small Exponents and Bucket Tests. Recall the various testing techniques covered in Sec-
tion 1.2. Our batch verifiers in this paper make use of the small exponents test, but since the
bucket test uses the small exponents test as a subroutine, we note that we can also use the bucket
test to further speed up verification of many signatures.

2 Definitions

Recall that a digital signature scheme is a tuple of algorithms (Gen,Sign,Verify) that also is cor-
rect and secure. The correctness property states that for all Gen(1`) → (pk , sk), the algorithm
Verify(pk ,m,Sign(sk ,m)) = 1.

There are two common notions of security. Goldwasser, Micali and Rivest [30] defined a scheme
to be unforgeable as follows: Let Gen(1`)→ (pk , sk). Suppose (m,σ) is output by a p.p.t. adversary
A with access to a signing oracle Osk (·) and input pk . Then the probability that m was not queried
to Osk (·) and yet Verify(pk ,m, σ) = 1 is negligible in `. An, Dodis and Rabin [1] proposed the
notion of strong unforgeability, where if A outputs a pair (m,σ) such that Verify(pk ,m, σ) = 1,
then except with negligible probability at some point the signing oracle Osk (·) was queried on m
and outputted signature σ exactly. In other words, an adversary cannot create a new signature
even for a previously signed message. Our batch verification definitions work with either notion.
The signatures used in Section 4 meet the GMR [30] definition, while those in Section 5 meet the
stronger ADR [1] definition.

Now, we consider the case where we want to quickly verify a set of signatures on (possibly)
different messages by (possibly) different signers. The input is {(t1,m1, σ1), . . . , (tn,mn, σn)}, where
ti specifies the verification key against which σi is purported to be a signature on message mi. We
extend the definitions of Bellare, Garay and Rabin [4] to deal with multiple signers. And this is an
important point that wasn’t a concern with only a single signer: one or more of the signers may
be maliciously colluding.

Definition 2.1 (Batch Verification of Signatures) Let ` be the security parameter. Suppose
(Gen,Sign,Verify) is a signature scheme, k, n ∈ poly(`), and (pk1, sk1), . . . , (pkk, skk) are generated
independently according to Gen(1`). Let PK = {pk1, . . . , pkk}. Then we call probabilistic Batch a
batch verification algorithm when the following conditions hold:

• If pk ti ∈ PK and Verify(pk ti ,mi, σi) = 1 for all i ∈ [1, n], then
Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 1.

• If pk ti ∈ PK for all i ∈ [1, n] and Verify(pk ti ,mi, σi) = 0 for some i ∈ [1, n], then
Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 0 except with probability negligible in `,
taken over the randomness of Batch.

6

Note that Definition 2.1 requires that signing keys be generated honestly, but then they can be
later held by an adversary. In practice, users could register their keys and prove some necessary
properties of the keys at registration time [2].

On Differences between Batch Verification, Screening and Aggregate Signatures. As
we discussed in the introduction, when doing our literature search on batch verification, we often
came across works (e.g., [21, 23]) which confuse the goals of aggregate signatures and batch veri-
fication or claim to do batch verification when, in fact, they often meet a weaker guarantee called
screening [4]. Let us clarify these distinct notions.

Informally, in both batch verification and screening, the goal is an algorithm that takes as input
n distinct signatures and verifies them quickly. In batch verification, the batch of signatures should
verify if and only if all individual signatures are valid. In the screening security model, an honest
signer is protected in the sense that an attacker cannot cause her to become bound to a message
that she did not sign, even if the attacker controls all other signers; however, honest verifiers are
not totally protected from dishonest signers in the sense that a dishonest signer might be able to
devise a batch of signatures that pass the screening test, but do not all individually verify.

The goal in aggregate signatures is an algorithm that takes as input n distinct signatures
and compresses them to save bandwidth. It happens that the security definition of aggregate
signatures [8] implies screening, while neither definition implies batch verification. We first give the
formal definitions of screening and aggregate signatures, and then discuss a scheme which satisfies
these notions, but not batch verification.

Definition 2.2 (Screening of Signatures) Let ` be the security parameter. Suppose (Gen,Sign,
Verify) is a signature scheme, n ∈ poly(`) and (pk0, sk0) ← Gen(1`). Let Osk0(·) be an oracle that
on input m outputs σ = Sign(sk0,m). Then for all p.p.t. adversaries A, we call probabilistic Screen
a screening algorithm when µ(`) defined as follows is a negligible function:

Pr[(pk0, sk0)← Gen(1`), (pk1, sk1)← Gen(1`), . . . , (pkn, skn)← Gen(1`),

D ← AOsk0
(·)(pk0, (pk1, sk1), . . . , (pkn, skn)) :

Screen(D) = 1 ∧ (pk0,m, σ) ∈ D ∧ m 6∈ Q] = µ(`),

where Q is the set of queries that A made to Osk0(·) and for all (pka, b, c) ∈ D, a ∈ {0, . . . , n}.

The above definition is generalized to the multiple-signer case from the single-signer screening
definition of Bellare, Garay and Rabin [4]. We now describe the security notion for aggregate
signatures; the correctness property should be obvious.

Definition 2.3 (Aggregate Signatures Security [8]) Let ` be the security parameter. Suppose
(Gen, Sign, Verify) is a signature scheme, n ∈ poly(`) and (pk0, sk0) ← Gen(1`). Let Osk0(·) be an
oracle that on input m outputs σ = Sign(sk0,m). Then for all p.p.t. adversaries A, we call prob-
abilistic AggVerify an aggregate-verification algorithm when µ(`) defined as follows is a negligible
function:

Pr[(pk0, sk0)← Gen(1`); (pk1, . . . , pkn,m0, . . . ,mn, σ)← AOsk0
(·)(pk0) :

AggVerify((pk0, . . . , pkn), (m0, . . . ,mn), σ) = 1 ∧ m0 6∈ Q] = µ(`),

where Q is the set of queries that A made to Osk0(·).

7

As mentioned above, screening is the (maximum) guarantee that some aggregate signatures
offer if one were to attempt to batch verify a group of signatures by first aggregating them together
and then executing the aggregate-verification algorithm. We now give an example of a construction
which can satisfy both Definitions 2.2 and 2.3, but which provably does not satisfy Definition 2.1.
Consider the aggregate signature scheme of Boneh, Gentry, Lynn and Shacham [8] based on the
BLS signatures [9]. First, we review the BLS signatures. Let G = 〈g〉 be a group of prime order
q that provided for a bilinear map e : G × G → GT . To generate a key pair, choose a random
sk ∈ Zq and set pk = gsk . A signature on message m is σ = H(m)sk , where H : {0, 1}∗ → G is
a hash function. To verify a signature σ on a message m, one checks that e(σ, g) = e(H(m), pk).
Given a group of message-signature pairs (m1, σ1), . . . , (mn, σn) (all purportedly from the same
signer) where each message is distinct, BGLS aggregate them as A =

∏n
i=1 σi. Then all signatures

can be verified in aggregate (i.e., screened) by testing that e(A, g) = e(
∏n
i=1H(mi), pk). This

scheme is not, however, a batch verification scheme since, for any a 6= 1 ∈ G, the two invalid
message-signature pairs P1 = (m1, a · H(m1)sk) and P2 = (m2, a

−1 · H(m2)sk) will verify under
Definition 2.2 (as BGLS observe [8]), but will not verify under Definition 2.1. Indeed, for some
pervasive computing applications only guaranteeing screening would be disastrous, because only
P1 may be relevant information to forward to the next entity – and it won’t verify once it arrives!
Also recall the e-mail scenario from Section 1. If we only did screening on the server, a user could
send n messages with invalid signatures (to different receivers) that would screen correctly. The
sender could then later claim that he did not send one of the messages and indeed the signature
will not verify unless one can get hold of all n messages! To be fair, batch verification is not what
aggregate schemes were designed to do.

Let’s make one final observation about the relationship between batch verification and screening.
Let D = {(t1,m1, σ1), . . . , (tn,mn, σn)}. We note that while Screen(D) = 1 does not guarantee that
Verify(pk ti ,mi, σi) for all i; it does guarantee that the holder of sk ti authenticated mi. That is, for
all i, the holder of sk ti helped to create σi, which may or may not be a valid signature for mi. Thus,
a screening scheme can be employed to hold users accountable for the messages they “sign” in a set
D such that Screen(D) = 1, but to do this the entire set D must be recorded or retransmitted to a
third party. In the authenticated email scenario, where the mailserver is verifying the signatures on
emails for many different users, releasing D (in the event of disputes) raises serious privacy issues.
One could consider releasing a non-interactive zero-knowledge proof of knowledge of D such that
Screen(D) = 1, although the naive approach will require O(|D|) space and O(|D|) time to verify.

3 Algebraic Setting and Group Membership

Bilinear Groups. Let BSetup be an algorithm that, on input the security parameter 1`, outputs
the parameters for a bilinear map as (q, g,G,GT , e), where G and GT are groups of prime order
q ∈ Θ(2`). The efficient mapping e : G × G → GT is both: (bilinear) for all g ∈ G and a, b ← Zq,
e(ga, gb) = e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) 6= 1. Following prior work,
we write G and GT in multiplicative notation (although G is often also denoted as an additive
group). This bilinear map is called a symmetric bilinear map. A more general version of the
bilinear map is the asymmetric bilinear map e : G1 × G2 → GT , where G1 and G2 are distinct
groups, possibly without efficient isomorphisms between them. Getting into details about how
these bilinear maps are constructed is not the purpose of this paper, so we just give a very brief
overview required for reasoning about the efficiency of our schemes.

8

G1 and G2 are groups of points on some curve and GT is a subgroup of a multiplicative group
over a related finite field. All groups have the same order q. Let E be an elliptic curve. We denote
the group of points on E defined over Fp as E(Fp). G1 (or G in the symmetric setting) is a subgroup
of E(Fp), G2 is usually defined as a subgroup of E(Fpk) where k is the embedding degree and GT

is usually a subgroup of E(F∗
pk). Let’s look at the size of the group elements. For simplicity we will

assume that we are aiming for security comparable to 1024 bit RSA. Note that although a point
(x, y) on a curve consist of two elements x and y in the underlying field, the size of groups elements
are equivalent to the size of elements in the underlying field. The reason is that we only need to
represent the x coordinate and the least significant bit of y in order to reconstruct y when needed.

So what is the minimum size the group elements can have? First of all the group order q must
be large enough to resist attacks on discrete logarithms, such as the Pollard-ρ attack, which means
that q ≥ 160. Second, the MOV attack states that solving the discrete logarithm problem on a
curve, reduces to solving it over the corresponding finite field [46], which means that the bitlength
of pk must be around 1024, which has implications for the size of GT . The best known curves in
the symmetric setting works with |p| = 512 and k = 2, and hence elements of G will be 512 bits,
while elements of GT will be 1024 bits. In the asymmetric setting one can choose |p| = 160 and
k = 6 which results in elements of size 160 bits in G1, while elements of G2 and GT will be 960
bits. In some cases elements of G2 can be represented in the subfield E(Fpk/2) instead, resulting in
elements of 480 bits [38].

Our constructions from Section 5 also work in the asymmetric setting which allows us to use a
short representation of the signatures. The Π-IBS scheme from Section 4 can be modified to work
in the asymmetric setting, but some parts of the signature will end up in the large group. We refer
to the efficiency note paragraphs in Section 4 and 5 for a more detailed discussion.

Testing Membership in G. In a non-bilinear setting, Boyd and Pavlovski [10] observed that
the proofs of security for many previous batch verification or screening schemes assumed that
the signatures (potentially submitted by a malicious adversary) were elements of an appropriate
subgroup. For example, it was common place to assume that signatures submitted for batch DSA
verification contained an element in a subgroup G of Z∗p of prime order q. Boyd and Pavlovski [10]
pointed out efficient attacks on many batching algorithms via exploiting this issue. Of course, group
membership cannot be assumed, it must be tested and the work required by this test might well
obliterate all batching efficiency gains. E.g., verifying that an element y is in G by testing if yq

mod q = 1; easily obliterates the gain of batching DSA signatures. Boyd and Pavlovski [10] suggest
methods for overcoming this problem through careful choice of q.

In this paper, we will work in a bilinear setting, and we must be careful to avoid this common
mistake in batch verification. Our proofs will require that elements of purported signatures are
members of G and not E(Fp) \ G. The question is: how efficiently can this fact be verified?
Determining whether some data represents a point on a curve is easy. The question is whether it
is in the correct subgroup. Assume we have a bilinear map e : G1 ×G2 → GT . In all the schemes
we use, signatures are in G1, so this is the group we are interested in testing membership of.

If the order of G1 is q, one option is to verify that an element y is in G1 by checking that
yq = 1. While this might seem inefficient, it is actually not a problem in practice when working
with pairing based schemes, since the time required for a single exponentiation is considerably less
than the time required for computing a pairing. This has been verified experimentally by Ferrara
et al. [25]. One area for improvement in batching, however, is to devise more efficient methods for

9

membership testing in bilinear groups. Chen, Cheng and Smart [20] provide more details on this.

Complexity Assumptions. In the coming sections, we will refer to the following complexity
assumptions.

Assumption 3.1 (Computational Diffie-Hellman [24]) Let g generate a group G of prime
order q ∈ Θ(2`). For all p.p.t. adversaries A, the following probability is negligible in `:

Pr[a, b,← Zq; z ← A(g, ga, gb) : z = gab].

Assumption 3.2 (Decisional Bilinear Diffie-Hellman [7]) Let BSetup(1`)→ (q, g,G, GT , e),
where g generates G. For all p.p.t. adversaries A, the following probability is at most 1/2 plus a
negligible function in `:

Pr[a, b, c, d← Zq; x0 ← e(g, g)abc; x1 ← e(g, g)d; z ← {0, 1}; z′ ← A(g, ga, gb, gc, xz) : z = z′].

Assumption 3.3 (LRSW [45]) Let BSetup(1`) → (q, g,G,GT , e). Let X,Y ∈ G, X = gx, and
Y = gy. Let OX,Y (·) be an oracle that, on input a value m ∈ Z∗q, outputs a triple A = (a, ay, ax+mxy)
for a randomly chosen a ∈ G. For all p.p.t. adversaries A(·), the following probability is negligible
in `:

Pr[(q, g,G,GT , e)← BSetup(1`);x← Zq; y ← Zq;X = gx;Y = gy;

(m, a, b, c)← AOX,Y (q, g,G,GT , e, X, Y) : m /∈ Q ∧ m ∈ Z∗q ∧
a ∈ G ∧ b = ay ∧ c = ax+mxy]

where Q is the set of queries that A made to OX,Y (·).

4 Batch Verification without Random Oracles

In this section, we present a method for batch verifying an identity-based signature scheme Π-IBS.
This batch verification method can be executed in different modes, optimizing for the lowest run-
time. Let n be the number of certificate/signature pairs, let 2k be the number of users and let there
be k bits per message. Let z be the additional security parameter required by the Π-IBS. Further-
more assume that the k bits are divided into z elements of k/z bits each. Then our batch verifier
will verify n certificate/signature pairs with asymptotic complexity of the dominant operations
roughly MIN{(2n+ 3) , (z + 3)}.

On the practical side, we note that as z grows there is a corresponding degradation in the
concrete security of the IBS scheme (see [19] for a detailed discussion of these tradeoffs.) Setting
z = k/32, however, seems a reasonable choice. Suppose we use SHA256 to hash all the messages
(k = 256) and we choose the elements to be 32 bits (k/z = 32), then roughly when n ≥ 3 batch
verification becomes faster than individual verification.

10

4.1 Batch Verification for Π-IBS

We describe a batch verification algorithm for the Π-IBS scheme [19], where the number of pairings
depends on the security parameter and not on the number of signatures and where no random
oracles are necessary. The underlying Π-IBS signature scheme appears only implicitly in prior
work, so let us clearly explain its origin. We begin with the observation by Boyen and Waters
that an IBS scheme is realized by the key issuing algorithm of any (fully-secure) 2-level hierarchical
identity-based encryption (HIBE) scheme [11].

In 2004, Boneh and Boyen described an efficient HIBE in the selective-ID security model [5]. In
2005, Waters described how to alter this scheme to make it fully-secure [53]. The IBS scheme that
can be extracted from Waters 2-HIBE was proven secure under CDH in the standard model by
Boyen and Waters [11]. In the conference version of this paper [12], we presented a batch verifier
for this IBS scheme. Let n be the number of certificate/signature pairs, let 2k1 be the number of
users, and let k2 be the bits per message. Then our batch verifier from the conference version can
verify n certificate/signature pairs with asymptotic complexity of the dominant operations roughly
MIN{(2n+ 3) , (k1 + n+ 3) , (n+ k2 + 3) , (k1 + k2 + 3)}. Suppose there are one billion users
(k1 = 30) and SHA256 is used to hash all the messages (k2 = 256), then when n ≥ 31 batching
becomes faster than individual verification and at most 289 dominant operations will have to be
performed regardless of n.

Fortunately, we are able to significantly improve the efficiency of these prior results. We begin
by recalling that in 2005 Naccache [47] and Chatterjee and Sarkar [18] independently showed how
to generalize the Waters IBE to optimize it for efficiency. In 2006 Chatterjee and Sarkar extended
these ideas to Waters HIBE and the resulting HIBE was proven secure under DBDH in the standard
model [19]. We call the IBS scheme implicitly defined by this generalized HIBE as Π-IBS. It is
known to be secure under DBDH [19] and we conjecture that its security can be shown under CDH.

The Π-IBS scheme and its batch verification algorithm are both considerably more practical than
the non-generalized version presented in our conference paper [12]. Indeed, the structure imposed
by the generalization [47, 19] makes the Π-IBS scheme particularly well-suited for batch verification.
We now explicitly describe the Π-IBS and then show how to batch verify these signatures.

We assume that the identities and messages are both bit-strings of length k represented by z
blocks of k/z bits each. (If this is not the case, then let k be the larger bit-length and then pre-pad
the shorter string with zeros.) Let BSetup(1`)→ (q, g,G,GT , e).

Setup: First choose a secret α ∈ Zq and h ∈ G and calculate A = e(g, h)α. Then pick two random
integers y′1, y

′
2 ∈ Zq and a random vector y = (y1, . . . , yz) ∈ Zzq . The master secret key is

MK = hα and the public parameters are given as: PP = (g,A, u′1 = gy
′
1 , u′2 = gy

′
2 , u1 =

gy1 , . . . , uz = gyz).
We use the notation of Chatterjee and Sarkar [19] to define the following function. Let
v = (v1, . . . , vz), where each vi is a (k/z)-bit string. For i ∈ {1, 2}, let:

Ui(v) = u′i

z∏
j=1

u
vj

j .

Extract: To create a private key for a user with identity ID = (κ1, . . . , κz), select r ∈ Zq and
return KID = (hα · U1(ID)r, g−r) .

11

Sign: To sign a message m = (m1, . . . ,mz), where each mi is a (k/z)-bit string, using private key
K = (K1,K2), select s ∈ Zq and return

S =
(
K1 · U2(m)s, K2, g

−s) .
Verify: To verify a signature S = (S1, S2, S3) from identity ID = κ1, . . . , κz on message m, parse

m = (m1, . . . ,mz), where each mi is a (k/z)-bit string, and check that:

A = e(S1, g) · e(S2, U1(ID)) · e(S3, U2(m)).

If this equation holds, output accept; otherwise output reject.

We now introduce a batch verifier for this signature scheme. The basic idea is to adopt the
small exponents test from [4] and to take advantage of the peculiarities of bilinear maps.

Batch Verify: Suppose we want to batch verify n purported signatures. Let κij and mi
j denote

the j’th (k/z)-bit block of the identity of the i’th signer and the message signed by the i’th
signer, respectively. Let Si = (Si1, S

i
2, S

i
3) denote the signature from the i’th signer. First

check that all the identities have the correct length and that Si1, S
i
2, S

i
3 ∈ G for all i. If not;

output reject. Otherwise generate a vector ∆ = (δ1, . . . , δn) where each δi is a random element
of `b bits from Zq and set

P = e(
n∏
i=1

Si1
δi , g) · e(

n∏
i=1

Si2
δi , u′1) · e(

n∏
i=1

Si3
δi , u′2).

Depending on the values of z and n proceed as follows: if n < 2z check whether

n∏
i=1

Aδi = P ·
n∏
i=1

e(Si2
δi ,

z∏
j=1

u
κi

j

j) · e(Si3
δi ,

z∏
j=1

u
mi

j

j)

 (1)

holds, otherwise verify the equation

n∏
i=1

Aδi = P ·
z∏
j=1

e(
n∏
i=1

(Si2
κi

j · Si3
mi

j)δi , uj) . (2)

Output accept if the chosen equation holds; otherwise output reject.

Theorem 4.1 The above algorithm is a batch verifier for the Π-IBS.

Proof. Let IDi = (κi1, . . . , κ
i
z). The requirement that all public keys are valid is trivially sat-

isfied for an identity based scheme, once it has been verified that all identities have the correct
length. First we show that Verify(ID1,M1, S1) = · · · = Verify(IDn,Mn, Sn) = 1 implies that
Batch((ID1,M1, S1), . . . , (IDn,Mn, Sn)) = 1. This follows from the verification equation for the

12

Π-IBS scheme:
n∏
i=1

Aδi =
n∏
i=1

(
e(Si1, g) · e(Si2, U1(IDi)) · e(Si3, U1(Mi))

)δi (3)

= e(
n∏
i=1

Si1
δi , g) ·

n∏
i=1

e(Si2
δi , u′1

z∏
j=1

u
κi

j

j) ·
n∏
i=1

e(Si3
δi , u′2

z∏
j=1

u
mi

j

j)

= P ·
n∏
i=1

e(Si2
δi ,

z∏
j=1

u
κi

j

j) · e(Si3
δi ,

z∏
j=1

u
mi

j

j)

 . (4)

For the first part of the proof, all we need now is to show that equation 1 is equivalent to
equation 2. Since for all i, Verify(IDi,Mi, Si) = 1, (Si1, S

i
2, S

i
3) are valid signatures and hence we

can write Si2 = gbi and Si3 = gci for some elements bi, ci ∈ Zq. Now we rewrite the part inside the
parenthesis of equation 1 and get equation 2:

n∏
i=1

e(Si2
δi ,

z∏
j=1

u
κi

j

j) ·
n∏
i=1

e(Si3
δi ,

z∏
j=1

u
mi

j

j) =
n∏
i=1

(
e(gbi , g

Pz
j=1 κ

i
jyj) · e(gci , g

Pz
j=1m

i
jyj)
)δi

=
n∏
i=1

(
e(g, g)

Pz
j=1(δibiκ

i
jyj+δicim

i
jyj)
)

=
z∏
j=1

(
e(g, g)yj

Pn
i=1(δibiκ

i
j+δicim

i
j)
)

=
z∏
j=1

e(
n∏
i=1

(Si2
κi

j · Si3
mi

j)δi , uj) .

We must now show the other direction. This proof is an application of the technique for proving
the small exponents test in [4]. Batch verification accepts so we know that Si1, S

i
2, S

i
3 ∈ G and hence

we can write Si1 = gai , Si2 = gbi and Si3 = gci for some ai, bi, ci ∈ Zq. Also since h ∈ G we can write
h = gd for some d ∈ Zq.

Since equation 3 is just an (inefficient) variant of the batch verification, we know that it holds,
and we can rewrite it as:

n∏
i=1

Aδi =
n∏
i=1

(
e(gai , g) · e(gbi , gy

′
1g

Pz
j=1 yjκj) · e(gci , gy

′
2g

Pz
j=1 yjmj)

)δi
=

n∏
i=1

e(g, g)δi(ai+biy
′
1+ciy

′
2+bi

Pz
j=1 yjκj+ci

Pz
j=1 yjmj)

= e(g, h)
Pn

i=1 δid
−1(ai+biy

′
1+ciy

′
2+bi

Pz
j=1 yjκ

i
j+ci

Pz
j=1 yjm

i
j)

⇒
n∑
i=1

δiα−
n∑
i=1

δid
−1

ai + biy
′
1 + ciy

′
2 + bi

z∑
j=1

yjκ
i
j + ci

z∑
j=1

yjm
i
j

 ≡ 0 (mod q) .

13

Setting βi = α− d−1
(
ai + biy

′
1 + ciy

′
2 + bi

∑z
j=1 yjκ

i
j + ci

∑z
j=1 yjm

i
j

)
this can be written as:

n∑
i=1

δiβi ≡ 0 (mod q) . (5)

Assume that Batch((ID1,M1, S1), . . . , (IDn,Mn, Sn)) = 1, but for at least one i it is the case
that Verify(IDi,Mi, Si) = 0. Assume wlog that this is true for i = 1, which means that β1 6= 0.
Since q is a prime then β1 has an inverse γ1 such that β1γ1 ≡ 1 (mod q). This and equation 5 gives
us:

δ1 ≡ −γ1

n∑
i=2

δiβi (mod q) . (6)

Given (IDi,Mi, Si), where i = 1 . . . n, let E be an event that Verify(ID1,M1, S1) = 0 holds
but that Batch((ID1,M1, S1), . . . , (IDn,Mn, Sn)) = 1, or in other words, that we break batch
verification. Note that we do not make any assumptions about the remaining values. Let ∆′ =
δ2, . . . , δn denote the last n − 1 values of ∆ and let |∆′| be the number of possible values for this
vector. Equation 6 says that given a fixed vector ∆′ there is exactly one value of δ1 that will
make event E happen, or in other words that the probability of E given a randomly chosen δ1 is
Pr[E|∆′] = 2−`b . So if we pick δ1 at random and sum over all possible choices of ∆′ we get Pr[E] ≤∑|∆′|

i=1 (Pr[E|∆′] · Pr[∆′]). Plugging in the values, we get: Pr[E] ≤
∑2`b(n−1)

i=1

(
2−`b · 2−`b(n−1)

)
=

2−`b . 2

Efficiency Note. The signature for Π-IBS consists of three group elements, but since it is
identity-based there is no public key, and we assume that the identity is given ”for free” e.g., it
could be the hardware address of the network interface card. Hence the size of the signature that
verifies both the message and the identity depends only on the size of these group elements. We
have described the scheme in the symmetric bilinear setting e : G×G → GT because the original
scheme does not work in the asymmetric bilinear setting e : G1×G2 → GT . However, by switching
the order of the elements in the first pairing and modifying the public parameters accordingly, the
scheme also works in the asymmetric bilinear setting.

In the symmetric bilinear setting, elements must be around 512 bits for security comparable to
1024 bits RSA, which gives us a total signature size of 1536 bits. In the asymmetric bilinear setting
the elements S2 and S3 can be represented using 160 bits, whereas S1 needs 512 bits. So all in all
we can represent the signature on the message and the identity using only 832 bits. However, it
might not be efficient to test membership of the group G2, which is needed for batch verification.

5 Faster Batch Verification with Restrictions

In this section, we present a second method for batch verifying signatures together with their
accompanying certificates. We propose using the BLS signature scheme [9] for the certificates and
a modified version of the CL signature scheme [13] for signing messages. This method requires
only two pairings to verify n certificates (from the same authority) and three pairings to verify
n signatures (from possibly different signers). The cost for this significant efficiency gain is some
usage restrictions, although as we will discuss, these restrictions may not be a problem for some of
the applications we have in mind.

14

Certificates: We use a batch verifier for BLS signatures from the same authority as described in
Section 5.1. The scheme is secure under CDH in the random oracle model. To verify n BLS
certificates costs n-MultExpCost2

G(`b) + PairCost2
G,G + GroupTestCostnG + HashCostnG, using the

Section 1.2 notation.

Signatures: We describe a new signature scheme Π-Sig with a batch verifier in Section 5.2. The
scheme is secure under the LRSW assumption in the plain model when the size of the message
space is a polynomial and in the random oracle model when the size of the message space
is super-polynomial. We assume that there are discrete time or location identifiers φ ∈ Φ.
A user can issue at most one signature per φ (e.g., this might correspond to a device being
allowed to broadcast at most one message every 300ms) and only signatures from the same
φ can be batch verified together. To verify n Π-Sig signatures, costs n-MultExpCost2

G(`b) +
n-MultExpCostG(|w|+ `b)+PairCost3

G,G +GroupTestCostnG +HashCostnG, where w is the output
of a hash function.

5.1 Batch Verification of BLS Signatures

We describe a batch verifier for many signers for the Boneh, Lynn, and Shacham signatures [9]
described in Section 2, using the small exponents test [4], which requires distinct messages.

Batch Verify: Given purported signatures σi from n users on distinct messages Mi for i = 1 . . . n,
first check that all public keys pk i where i ∈ [1, n] are valid, and that σi ∈ G for all i. If not; output
reject. Otherwise compute hi = H(Mi) and generate a vector δ = (δ1, . . . , δn) where each δi is a
random element of `b bits from Zq. Check that e(

∏n
i=1 σ

δi
i , g) =

∏n
i=1 e(hi, pk i)δi . If this equation

holds, output accept; otherwise output reject.

Theorem 5.1 The algorithm above is a batch verifier for BLS signatures.

Proof. First we show that Verify(pk1,M1, S1) = · · · = Verify(pkn,Mn, Sn) = 1 implies that
Batch((pk1,M1, S1), . . . , (pkn,Mn, Sn)) = 1. This follows from the verification equation for the
BLS scheme:

n∏
i=1

e(σi, g)δi =
n∏
i=1

e(hi, pk i)
δi ⇔ e(

n∏
i=1

σδii , g) =
n∏
i=1

e(hi, pk i)
δi (7)

We must now show the other direction. This proof is again an application of the technique for
proving the small exponents test in [4]. Batch verification accepts so we know that σi ∈ G and
hence we can write σi = gci for some ci ∈ Zq. We also know that hi ∈ G so we write it as hi = gri .
Recall that pki = gxi . We know that equation 7 holds, so we can rewrite it as:

n∏
i=1

e(σi, g)δi =
n∏
i=1

e(hi, pk i)
δi =

n∏
i=1

e(g, g)δirixi

⇒ e(g, g)
Pn

i=1 δici = e(g, g)
Pn

i=1 δirixi

⇒
n∑
i=1

δici −
n∑
i=1

δirixi ≡ 0 (mod q)

15

Setting βi = ci − rixi this is equivalent to:

n∑
i=1

δiβi ≡ 0 (mod q)

The rest of the proof follows from the last part of the proof of Theorem 4.1. 2

Single Singer for BLS. However, BLS [9] previously observed that if we have a single signer
with public key v, the verification equation can be written as e(

∏n
i=1 σ

δi
i , g) = e(

∏n
i=1 h

δi
i , v) which

reduces the load to only two pairings.

Theorem 5.2 ([9]) The algorithm above is a single-signer, batch verifier for BLS signatures.

5.2 A New Signature Scheme Π-Sig

In this section we introduce a new signature scheme secure under the LRSW assumption [45], which
is based on the Camenisch-Lysyanskaya signature scheme [13].

The Original CL Scheme. Recall the Camenisch and Lysyanskaya signature scheme [13]. Let
BSetup(1`) → (q, g,G,GT , e). Choose the secret key sk = (x, y) ∈ Z2

q at random and set X = gx

and Y = gy. The public key is pk = (X,Y). To sign a message m ∈ Z∗q , choose a random
a ∈ G and compute b = ay, c = axbxm. Output the signature (a, b, c). To verify, check whether
e(X, a) · e(X, b)m = e(g, c) and e(a, Y) = e(g, b) holds.

Π-Sig: A version of the CL Scheme Allowing Batch Verification. Our goal is to batch-
verify CL signatures made by different signers. That is, we need to consider how to verify equations
of the form e(X, a) · e(X, b)m = e(g, c) and e(a, Y) = e(g, b). The fact that the values X, a, b, and
c are different for each signature seems to prevent efficient batch verification. Thus, we need to find
a way such that many different signers share some of these values. Obviously, X and c need to be
different. Now, depending on the application, all the signers can use the same value a by choosing
a as the output of some hash function applied to, e.g., the current time period or location. We
then note that all signers can use the same b in principle, i.e., have all of them share the same Y as
it is sufficient for each signer to hold only one secret value (i.e., sk = x). Indeed, the only reason
that the signer needs to know Y is to compute b. However, it turns out that if we define b such
that loga b is not known, the signature scheme is still secure. So, for instance, we can derive b in a
similar way to a using a second hash function. Thus, all signers will virtually sign using the same
Y per time period (but a different one for each period).

We note that the idea of sharing some value between the signers in order to efficiently perform
some operation on the signatures is not new. Gentry and Ramzan present an identity based
aggregate signature scheme [29] in which signatures can only be aggregated if all signers agree on
some dummy message that none of them have used before.

Let us now describe the resulting scheme. Let BSetup(1`)→ (q, g,G,GT , e). Let φ ∈ Φ denote
the current time period or location, where |Φ| is polynomial. LetM be the message space, for now
let M = {0, 1}∗. Let H1 : Φ→ G, H2 : Φ→ G, and H3 :M×Φ→ Zq be different hash functions.

KeyGen: Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X.

16

Sign: If this is the first call to Sign during period φ ∈ Φ, then on input message m ∈ M, set
w = H3(m||φ), a = H1(φ), b = H2(φ) and output the signature σ = axbxw. Otherwise, abort.

Verify: On input message-period pair (m,φ) and purported signature σ, compute w = H3(m||φ),
a = H1(φ) and b = H2(φ), and check that e(σ, g) = e(a,X) · e(b,X)w. If true, output accept;
otherwise output reject.

Theorem 5.3 Under the LRSW assumption in G, the Π-Sig signature scheme is existentially
unforgeable in the random oracle model for message space M = {0, 1}∗.

Proof. We show that if there exists a p.p.t. adversary A that succeeds with probability ε in forging
Π-Sig signatures, then we can construct a p.p.t. adversary B that solves the LRSW problem with
probability ε · |Φ|−1 · q−1

H in the random oracle model, where qH is the maximum number of oracle
queries A makes to H3 during any period φ ∈ Φ. Recall that |Φ| is a polynomial. Adversary
BOX,Y (·) against LRSW operates as follows on input (q, g,G,GT , e, X, Y). Let ` be the security
parameter. We assume that Φ is pre-defined. Let qH be the maximum number of queries A makes
to H3 during any period φ ∈ Φ.

1. Setup: Send the bilinear parameters (q, g,G,GT , e) to A. Choose a random w′ ∈ M and
query OX,Y (w′) to obtain an LRSW instance (w′, a′, b′, c′). Choose a random φ′ ∈ Φ. Treat
H1, H2, H3 as random oracles. Allow A access to the hash functions H1, H2, H3.

2. Key Generation: Set pk∗ = X. For i = 1 to n, choose a random sk i ∈ Zq and set pk i = gsk i .
Output to A the keys pk∗ and all (pk i, sk i) pairs.

3. Oracle queries: B responds to A’s hash and signing queries as follows. Choose random ri and
si in Zq for each time period (except φ′). Set up H1 and H2 such that:

H1(φi) =

{
gri if φi 6= φ′;
a′ otherwise.

(8)

and

H2(φi) =

{
gsi if φi 6= φ′;
b′ otherwise.

(9)

Pick a random j in the range [1, qH]. Choose random tl,i ∈ Zq, such that tl,i 6= w′, for
l ∈ [1, qH] and i ∈ [1, |Φ|]. Set up H3 such that:

H3(ml||φi) =

{
tl,i if φi 6= φ′ or l 6= j;
w′ otherwise.

(10)

B records m∗ := mj . Finally, set the signing query oracle such that on the lth query involving
period φi:

Osk∗(ml||φi) =


abort if φi = φ′ and l 6= j;
c′ else if φi = φ′ and l = j;
XriX(si)tl,i otherwise.

(11)

17

4. Output: At some point A stops and outputs a purported forgery σ ∈ G for some (ml, φi). If
φi 6= φ′, B did not guess the correct period and thus B outputs a random guess for the LRSW
game. If ml = m∗, or the Π-Sig signature does not verify, A’s output is not a valid forgery
and thus B outputs a random guess for the LRSW game. Otherwise, B outputs (tl,i, a′, b′, σ)
as the solution to the LRSW game.

We now analyze B’s success. If B is not forced to abort or issue a random guess, then we note
that σ = H1(φi)xH2(φi)x·H3(ml||φi). In this scenario φi = φ′ and tl,i 6= w′. We can substitute as
σ = (a′)x(b′)x·(tl,i). Thus, we see that (tl,i, a′, b′, σ) is indeed a valid LRSW instance. Thus, B
succeeds at LRSW whenever A succeeds in forging Π-Sig signatures, except when B is forced to
abort or issue a random guess. First, when simulating the signing oracle, B is forced to abort
whenever it incorrectly guesses which query to H3, during period φ′, A will eventually query to
Osk∗(·, ·). Since all outputs of H3 are independently random, B will be forced to abort at most q−1

H

probability. Next, provided that A issued a valid forgery, then B is only forced to issue a random
guess when it incorrectly guesses which period φ ∈ Φ that A will choose to issue its forgery. Since,
from the view of A conditioned on the event that B has not yet aborted, all outputs of the oracles
are perfectly distributed as either random oracles (H1, H2, H3) or as a valid Π-Sig signer (Osk∗).
Thus, this random guess is forced with probability at most |Φ|−1. Thus, if A succeeds with ε
probability, then B succeeds with probability ε · |Φ|−1 · q−1

H . 2

On Removing the Random Oracles. In the previous proof, notice that we treated hash
functions H1, H2 and H3 as independent random oracles which were (statically) programmed in
|Φ|, |Φ|, and |Φ| · |M| points, respectively, where Φ is the set of time period identifiers and M
is the signing message space. Recall that, as before, |Φ| is restricted to be polynomial in the
security parameter. Now, for sufficiently short message spaces, e.g., ISO defined error messages,
we can replace all three random oracles in the security proof of Π-Sig by concrete hash functions.
Suppose that given a set of pairs (x1, y1), . . . , (xk, yk), it is possible to efficiently sample a function
H : {0, 1}` → G (where k < 2` + 1) from a (2` + 1)-independent function family H such that for
each H ∈ H, we have H(xi) = yi for i = 1 to k. If such types of hash function families exist then
we could simply constrain them exactly as we programmed our random oracles.

Fortunately, Canetti, Halevi, and Katz [14] describe a method of efficiently constructing such
a hash function family which allows to map strings to bilinear map elements (or to map strings to
elements in another prime-order algebraic group such as Zq). Any family satisfying the constraints
above will work for our purposes, where H1 and H2 map into bilinear group G and H3 maps into
Zq. The construction remains as before and the new security proof simply uses concrete functions
with constraints mirroring the points (statically) programmed in the oracles.

Lemma 5.4 Under the LRSW assumption in G, the Π-Sig signature scheme is existentially un-
forgeable in the plain model when |M| are polynomial in the security parameter.

Batch Verification of Π-Sig Signatures. Batch verification of n signatures σ1, . . . , σn on mes-
sages m1, . . . ,mn for the same period φ can be done as follows. (Recall that each signer can issue
at most one signature per time period. Thus, these n signatures are all from different signers.)
Assume that user i with public key Xi signed message mi. Set wi = H(mi||φ). First check that all
public keys Xi where i ∈ [1, n] are valid, and that σi ∈ G for all i. If not; output reject. Otherwise

18

pick a vector ∆ = (δi, . . . , δn) with each element being a random `b-bit number and check that
e(
∏n
i=1 σ

δi
i , g) = e(a,

∏n
i=1X

δi
i) · e(b,

∏n
i=1X

wiδi
i). If this equation holds, output accept; otherwise

output reject.

Theorem 5.5 The algorithm above is a batch verifier for Π-Sig signatures.

Proof. First we show that Verify(X1,M1, S1) = · · · = Verify(Xn,Mn, Sn) = 1 implies that Batch((X1,
M1, S1), . . . , (IDn,Mn, Sn)) = 1. This follows from the verification equation for the Π-Sig scheme
if we keep in mind that

n∏
i=1

e(σi, g)δi =
n∏
i=1

(e(a,Xi) · e(b,Xi)wi)δi =
n∏
i=1

e(a,Xi)δi ·
n∏
i=1

e(b,Xi)wiδi (12)

⇔ e(
n∏
i=1

σδii , g) = e(a,
n∏
i=1

Xδi
i) · e(b,

n∏
i=1

Xwiδi
i) .

We must now show the other direction. This proof is again an application of the technique for
proving the small exponents test in [4]. Batch verification accepts so we know that σi ∈ G and
hence we can write σi = gci for some ci ∈ Zq. We also know that a and b are in G so we write them
as a = gr and b = gs. Since equation 12 is just an (inefficient) variant of the batch verification, we
know that it holds, and we can rewrite it as:

n∏
i=1

e(σi, g)δi =
n∏
i=1

(e(a,Xi) · e(b,Xi)wi)δi =
n∏
i=1

e(g, g)δi(rxi+sxiwi)

⇒ e(g, g)
Pn

i=1 δici = e(g, g)
Pn

i=1 δi(rxi+sxiwi)

⇒
n∑
i=1

δici −
n∑
i=1

δi (rxi + sxiwi) ≡ 0 (mod q) .

Setting βi = ci − (rxi + sxiwi) this is equivalent to:

n∑
i=1

δiβi ≡ 0 (mod q) .

The rest of the proof follows from the last part of the proof of Theorem 4.1. 2

Π-Sig Without Batch Verification. So far we have described Π-Sig only as an efficient signa-
ture scheme to batch verify, but for completeness we note that if we are not interested in batch
verification, Π-Sig is still a fairly efficient regular signature scheme without any restrictions.

KeyGen: Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X.

Sign: Generate a value φ ∈ Φ that has never been used by the signer before. Then on input
message m ∈ M, set w = H3(m||φ), a = H1(φ), b = H2(φ), and σ = axbxw and output the
signature (σ, φ).

19

Verify: On input message m and purported signature (σ, φ), compute w = H3(m||φ), a = H1(φ)
and b = H2(φ), and check that e(σ, g) = e(abw, X). If true, output accept; otherwise output
reject.

This is very similar to the original scheme. Note that the only change is that φ is now generated
independently from all other signers and included as part of the signature, which makes the scheme
unsuitable for batch verification (since the probability that many signers will share the same value
of φ is small). However, now that we are only interested in individual verification, we can rewrite
the original verification equation e(σ, g) = e(a,X) · e(b,X)w as e(σ, g) = e(abw, X) which requires
only two pairings to verify. Finally note that this variant of the verification equation does not
depend on how φ was generated, and can always be used for individual verification if needed.

Efficiency Note. First, we observe that the Π-Sig signatures are very short, requiring only one
element in G. Since the BLS signatures also require only one element in G, and since a public key
for the Π-Sig scheme is also only one group element, the entire signature plus certificate could be
transmitted in three G elements. In order to get the shortest representation for these elements, we
need to use asymmetric bilinear maps e : G1×G2 → GT , where G1 6= G2, which will allow elements
in G1 to be 160 bits and elements of G2 to be 512 bits for a security level comparable to RSA-1024.
For Π-Sig signatures we need to hash into G1 which according to Galbraith, Paterson and Smart
can be done efficiently [27]. To summarize; using BLS and Π-Sig we can represent the signature
plus certificate using approximately 832 bits with security comparable to RSA-1024, compared to
around 3072 bits for actually using RSA-1024.

Second, suppose one uses the universal one-way hash functions described by Canetti, Halevi, and
Katz [14] to remove the random oracles from Π-Sig. These hash functions require one exponentiation
per constraint. In our case, we may require as many as |Φ| · |M| constraints. Thus, the cost to
compute the hashes may dampen the efficiency gains of batch verification. However, our scheme will
benefit from improvements in the construction of universal one-way hash functions with constraints.

If Π-Sig is used as a signatures scheme without an efficient batch verifier, the signature require
one group element in G and one element in Φ, where the size of Φ only needs to be large enough
to represent the number of times a user might want to sign with the same private key. Verification
of a single Π-Sig signature requires two pairings.

6 Conclusions and Open Problems

In this paper we focused on batch verification of signatures. We overviewed the large body of
existing work, almost exclusively dealing with single signers (Boneh, Lynn and Shacham [9] provide
a batch verification scheme for multiple signers on the same message). We extended the general
batch verification definition of Bellare, Garay and Rabin [4] to the case of multiple signers. We
then presented, to our knowledge, the first efficient and practical batch verification scheme for
signatures without random oracles. We focused on solutions that comprehended the time to verify
the signature and the corresponding certificate for the verification key. First, we presented a
batch verifier for the Π-IBS that can verify n signatures using only z + 3 pairings (the dominant
operation), where identities are k bits divided into z elements, each of k/z bits. This is a significant
improvement over the 3n pairings required by individual verification. Second, we presented a
solution in the random oracle model that batch verifies n BLS certificates and n Π-Sig signatures

20

using only 5 pairings. Here, Π-Sig is a variant of the Camenisch-Lysyanskaya signatures that is
much shorter, allows for efficient batch verification from many signers, but where only one signature
can be safely issued per period.

It is an open problem to find a fast batch verification scheme for short signatures without the
period restrictions from Section 5. Another exciting open problem is to develop fast batch verifiers
for various forms of anonymous authentication such as group signatures, e-cash, and anonymous
credentials.

Acknowledgments

We thank Ivan Damg̊ard, Anna Lisa Ferrara, Jean-Pierre Hubaux, Panos Papadimitratos and the
anonymous reviewers for their helpful input. Susan Hohenberger and Michael Østergaard Peder-
sen performed part of this research while at IBM Research, Zürich Research Laboratory. Also,
Michael Østergaard Pedersen performed part of this research while at the University of Aarhus.
Susan Hohenberger is sponsored by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under contract FA8750-11-2-0211, the Office of
Naval Research under contract N00014-11-1-0470, NSF CAREER CNS-1053886, a Microsoft Fac-
ulty Fellowship and a Google Faculty Research Award. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US
government.

References

[1] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption.
In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT ’02, volume 2332 of
Lecture Notes in Computer Science, pages 83–107. Springer, 2002.

[2] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In 45th Symposium on Foundations of Computer
Science (FOCS), pages 186–195. IEEE Computer Society, 2004.

[3] Kenneth Barr and Krste Asanović. Energy aware lossless data compression. In MobiSys.
USENIX, 2003.

[4] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentia-
tion and digital signatures. In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT
’98, volume 1403 of Lecture Notes in Computer Science, pages 236–250. Springer, 1998.

[5] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
– EUROCRYPT ’04, volume 3027 of Lecture Notes in Computer Science, pages 223–238.
Springer, 2004.

[6] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT ’04, volume 3027 of
Lecture Notes in Computer Science, pages 382–400. Springer, 2004.

21

[7] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO ’01, volume 2139 of Lecture Notes in
Computer Science, pages 213–229. Springer, 2001.

[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT
’03, volume 2656 of Lecture Notes in Computer Science, pages 416–432. Springer, 2003.

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal
of Cryptology, 17(4):297–319, 2004.

[10] Colin Boyd and Chris Pavlovski. Attacking and repairing batch verification schemes. In
Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT ’00, volume 1976 of Lecture
Notes in Computer Science, pages 58–71. Springer, 2000.

[11] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In Serge
Vaudenay, editor, Advances in Cryptology – EUROCRYPT ’06, volume 4004 of Lecture Notes
in Computer Science, pages 427–444. Springer, 2006.

[12] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verification of
short signatures. In Moni Naor, editor, Advances in Cryptology – EUROCRYPT ’07, volume
4515 of Lecture Notes in Computer Science, pages 246–263. Springer, 2007.

[13] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew K. Franklin, editor, Advances in Cryptology – CRYPTO ’04, volume
3152 of Lecture Notes in Computer Science, pages 56–72. Springer, 2004.

[14] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In Eli Biham, editor, Advances in Cryptology – EUROCRYPT ’03, volume 2656 of Lecture
Notes in Computer Science, pages 255–271. Springer, 2003.

[15] Tianjie Cao, Dongdai Lin, and Rui Xue. Security analysis of some batch verifying signatures
from pairings. International Journal of Network Security, 3(2):138–143, 2006.

[16] Car 2 Car. Communication consortium. http://car-to-car.org.

[17] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap Diffie-Hellman
groups. In Yvo Desmedt, editor, 6th Public Key Cryptography (PKC), volume 2567 of Lecture
Notes in Computer Science, pages 18–30. Springer, 2003.

[18] Sanjit Chatterjee and Palash Sarkar. Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. In Dongho Won and Seungjoo Kim,
editors, 8th Information Security and Cryptology (ICISC), volume 3935 of Lecture Notes in
Computer Science, pages 424–440. Springer, 2005.

[19] Sanjit Chatterjee and Palash Sarkar. HIBE with short public parameters without random
oracle. In Xuejia Lai, editor, Advances in Cryptology – ASIACRYPT ’06, volume 4284 of
Lecture Notes in Computer Science, pages 145–160. Springer, 2006.

[20] L. Chen, Z. Cheng, and N.P. Smart. Identity-based key agreement protocols from pairings,
2006. Cryptology ePrint Archive: Report 2006/199.

22

[21] Jung Hee Cheon, Yongdae Kim, and Hyo Jin Yoon. A new ID-based signature with batch
verification, 2004. Cryptology ePrint Archive: Report 2004/131.

[22] Jung Hee Cheon and Dong Hoon Lee. Use of sparse and/or complex exponents in batch
verification of exponentiations. IEEE Transactions on Computers, 55(12):1536–1542, January
2006.

[23] Shi Cui, Pu Duan, and Choong Wah Chan. An efficient identity-based signature scheme with
batch verifications. In Abdur Chowdhury, Francis Lau, and Frank Zhigang Wang, editors, 1st
International Conference on Scalable Information Systems (InfoScale). ACM Press, 2006.

[24] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644–654, 1976.

[25] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and Michael Østergaard Peder-
sen. Practical short signature batch verification, 2008. Cryptology ePrint Archive: Report
2008/015.

[26] Amos Fiat. Batch RSA. In Gilles Brassard, editor, Advances in Cryptology – CRYPTO ’89,
volume 435 of Lecture Notes in Computer Science, pages 175–185. Springer, 1989.

[27] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers,
2006. Cryptology ePrint Archive: Report 2006/165.

[28] Craig Gentry. How to compress Rabin ciphertexts and signatures (and more). In Matthew K.
Franklin, editor, Advances in Cryptology – CRYPTO ’04, volume 3152 of Lecture Notes in
Computer Science, pages 179–200. Springer, 2004.

[29] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti Yung, editor,
9th Public Key Cryptography (PKC), volume 3958 of Lecture Notes in Computer Science, pages
257–273. Springer, 2006.

[30] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Computing, 17(2), 1988.

[31] R. Granger and N.P. Smart. On computing products of pairings, 2006. Cryptology ePrint
Archive: Report 2006/172.

[32] Lein Harn. Batch verifying multiple DSA digital signatures. Electronics Letters, 34(9):870–871,
1998.

[33] Lein Harn. Batch verifying multiple RSA digital signatures. Electronics Letters, 34(12):1219–
1220, 1998.

[34] Fumitaka Hoshino, Masayuki Abe, and Tetsutaro Kobayashi. Lenient/strict batch verification
in several groups. In George I. Davida and Yair Frankel, editors, 4th Information Security,
volume 2200 of Lecture Notes in Computer Science, pages 81–94. Springer, 2001.

[35] Min-Shiang Hwang, Cheng-Chi Lee, and Yuan-Liang Tang. Two simple batch verifying mul-
tiple digital signatures. In Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, 3rd
Information and Communications Security (ICICS), volume 2229 of Lecture Notes in Com-
puter Science, pages 233–237. Springer, 2001.

23

[36] Min-Shiang Hwang, Iuon-Chang Lin, and Kuo-Feng Hwang. Cryptanalysis of the batch verify-
ing multiple RSA digital signatures. Informatica, Lithuanian Academy of Sciences, 11(1):15–
19, 2000.

[37] IEEE. 5.9 GHz Dedicated Short Range Communications. http://grouper.ieee.org/
groups/scc32/dsrc.

[38] Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security levels, 2005.
Cryptology ePrint Archive: Report 2005/076.

[39] Chi-Sung Laih and Sung-Ming Yen. Improved digital signature suitable for batch verification.
IEEE Transactions on Computers, 44(7):957–959, 1995.

[40] Olaf Landsiedel, Klaus Wehrle, and Stefan Götz. Accurate prediction of power consumption
in sensor networks. In IEEE Workshop on Embedded Networked Sensors (EmNetS-II), 2005.

[41] Laurie Law and Brian J. Matt. Finding invalid signatures in pairing-based batches. In Steven D.
Galbraith, editor, Cryptography and Coding, 11th IMA International Conference, volume 4887
of Lecture Notes in Computer Science, pages 34–53. Springer, 2007.

[42] Seungwon Lee, Seongje Cho, Jongmoo Choi, and Yookun Cho. Efficient identification of bad
signatures in RSA-type batch signature. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E89-A(1):74–80, 2006.

[43] C. Lim and P. Lee. Security of interactive DSA batch verification. In Electronics Letters,
volume 30(19), pages 1592–1593, 1994.

[44] Chae Hoon Lim. Efficient multi-exponentation and application to batch verification of digital
signatures, 2000. http://dasan.sejong.ac.kr/~chlim/english_pub.html.

[45] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In
Carlisle Adams and Howard Heys, editors, 6th Selected Areas in Cryptography (SAC), volume
1758 of Lecture Notes in Computer Science, pages 184–199. Springer, 1999.

[46] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. Reducing elliptic curve logarithms
to logarithms in a finite field. In 23rd ACM Symposium on Theory of Computing (STOC),
pages 80–89, 1991.

[47] D. Naccache. Secure and practical identity-based encryption, 2005. Cryptology ePrint Archive:
Report 2005/369.

[48] David Naccache, David M’Räıhi, Serge Vaudenay, and Dan Raphaeli. Can DSA be improved?
complexity trade-offs with the digital signature standard. In Alfredo De Santis, editor, Ad-
vances in Cryptology – EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Science,
pages 77–85. Springer, 1994.

[49] Maxim Raya and Jean-Pierre Hubaux. Securing vehicular ad hoc networks. Journal of Com-
puter Security, 15:39–68, 2007.

[50] SeVeCom. Security on the road. http://www.sevecom.org.

24

[51] Hovav Shacham and Dan Boneh. Improving SSL handshake performance via batching. In David
Naccache, editor, Cryptographer’s Track at RSA Conference ’01, volume 2020 of Lecture Notes
in Computer Science, pages 28–43. Springer, 2001.

[52] Martin Stanek. Attacking LCCC batch verification of RSA signatures, 2006. Cryptology ePrint
Archive: Report 2006/111.

[53] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT ’05, volume 3494 of Lecture Notes in Computer
Science, pages 320–329. Springer, 2005.

[54] HyoJin Yoon, Jung Hee Cheon, and Yongdae Kim. Batch verifications with ID-based signa-
tures. In Choonsik Park and Seongtaek Chee, editors, 7th Information Security and Cryptology
(ICISC), volume 3506 of Lecture Notes in Computer Science, pages 233–248. Springer, 2004.

[55] Fangguo Zhang and Kwangjo Kim. Efficient ID-based blind signature and proxy signature from
bilinear pairings. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, 8th Information
Security and Privacy, Australasian Conference (ACISP), volume 2727 of Lecture Notes in
Computer Science, pages 312–323. Springer, 2003.

[56] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. Efficient verifiably encrypted signa-
ture and partially blind signature from bilinear pairings. In Thomas Johansson and Subhamoy
Maitra, editors, Progress in Cryptology – INDOCRYPT ’03, volume 2904 of Lecture Notes in
Computer Science, pages 191–204. Springer, 2003.

25

