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Abstract

In many applications, it is desirable to work with signatures that are both short, and yet
where many messages from different signers be verified very quickly. RSA signatures satisfy the
latter condition, but are generally thousands of bits in length. Recent developments in pairing-
based cryptography produced a number of “short” signatures which provide equivalent security
in a fraction of the space. Unfortunately, verifying these signatures is computationally intensive
due to the expensive pairing operation. In an attempt to simultaneously achieve “short and
fast” signatures, Camenisch, Hohenberger and Pedersen (Eurocrypt 2007) showed how to batch
verify two pairing-based schemes so that the total number of pairings was independent of the
number of signatures to verify.

In this work, we present both theoretical and practical contributions. On the theoretical side,
we introduce new batch verifiers for a wide variety of regular, identity-based, group, ring and
aggregate signature schemes. These are the first constructions for batching group signatures,
which answers an open problem of Camenisch et al. On the practical side, we implement
each of these algorithms and compare each batching algorithm to doing individual verifications.
Our goal is to test whether batching is practical; that is, whether the benefits of removing
pairings significantly outweigh the cost of the additional operations required for batching, such
as group membership testing, randomness generation, and additional modular exponentiations
and multiplications. We experimentally verify that the theoretical results of Camenisch et al.
and this work, indeed, provide an efficient, effective approach to verifying multiple signatures
from (possibly) different signers.

1 Introduction

As we move into the era of pervasive computing, where computers are everywhere as an integrated
part of our surroundings, there are going to be a host of devices exchanging messages with each
other, e.g., sensor networks, vehicle-2-vehicle communications [14, 36]. For these systems to work
properly, messages must carry some form of authentication, but the system requirements on the
authentication are particularly demanding. Any cryptographic solution must simultaneously be:

1. Short: Bandwidth is an issue. Raya and Hubaux argue that due to the limited spectrum
available for vehicular communication, something shorter than RSA signatures is needed [34].
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2. Quick to verify large numbers of messages from different sources: Raya and Hubaux also
suggest that vehicles will transmit safety messages every 300ms to all other vehicles within a
minimum range of 110 meters [34], which in turn may retransmit these messages. Thus, it is
much more critical that authentications be quick to verify rather than to generate.

3. Privacy-friendly: Users should be held accountable, but not become publicly identifiable.

Due to the high overhead of using digital signatures, researchers have developed a number of
alternative protocols designed to amortize signatures over many packets [21, 26], or to replace them
with symmetric MACs [33]. Each approach has significant drawbacks; for example, the MAC-based
protocols use time-delayed delivery so that the necessary verification keys are delivered after the
authenticated messages arrive. This approach can be highly efficient within a restricted setting
where synchronized clocks are available, but it does not provide non-repudiability of messages (to
hold malicious users accountable) or privacy. Signature amortization requires verifiers to obtain
many packets before verifying, and is vulnerable to denial of service. Other approaches, including
the short, undeniable signatures of Monnerat and Vaudenay [28, 29] are inappropriate for the
pervasive settings we consider, since verification requires interaction with the signer.

In 2001, Boneh, Lynn and Shacham developed a pairing-based signature that provides security
equivalent to 1024-bit RSA at a cost of only 170 bits [8] (slightly larger than HMAC-SHA1). This
was followed by many signature variants, some of them privacy-friendly, which were also relatively
short, e.g., [6, 10, 19, 11]. Unfortunately, the focus was on reducing the signature size, but less
attention was paid to the verification cost which require expensive pairing operations.

Recently, Camenisch, Hohenberger and Pedersen [13] took a step toward speeding up the verifi-
cation of short signatures, by showing how to batch verify two short pairing-based signatures so that
the total number of dominant (pairing) operations was independent of the number of signatures to
verify. However, their solution left open several questions which this work addresses.

First, their work was purely theoretical. To our knowledge, we are the first to provide a
detailed empirical analysis of batch verification of short signatures. This is interesting, because
our theoretical results and those of Camenisch et al. [13] reduce the total number of pairings by
adding in other operations, such as random number generation and small modular exponentiations,
so it was unclear how well these algorithms would perform in practice. Fortunately, in section 5,
we verify that these algorithms do work well.

Second, the existing literature contained many good ideas on batch verification, but these
ideas were scattered across multiple papers, and it wasn’t always clear how to safely employ these
techniques from scheme to scheme. In section 3, we present some basic tools that can be used to
securely batch verify a set of pairing-based equations.

Third, using this framework, we present a detailed study of when and how to batch verify
existing group, regular, identity-based, ring, and aggregate signature schemes (see Figure 2 for a
summary). This is non-trivial because we sometimes have to change the signatures themselves in
order to get them to batch efficiently. To our knowledge, these are the first known results for batch
verification of group and ring signatures, answering an open problem of Camenisch et al. [13].
This is particularly exciting, because it is the first step towards making short, privacy-friendly
authentication fast enough for deployment in real systems.

Finally, Camenisch et al. [13] did not address the practical issue of what to do if the batch ver-
ification fails. How does one detect which signatures in the batch are invalid? Does this detection
process eliminate all of the efficiency gains of batch verification? Fortunately, our empirical studies
reveal good news: invalid signatures can be detected via a recursive divide-and-conquer approach,
and if < 15% of the signatures are invalid, then batch verification is still more efficient than indi-
vidual verification. At the time we conducted these experiments, the divide-and-conquer approach
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Approx. Signature Size Verification Time
(MNT160 curve) Standard Batched∗

Signatures
BLS [9] (single signer) 160 bits 47.6 ms 2.28 ms
CHP [13] (many signers) 160 bits 73.6 ms 26.16 ms
Identity-Based Signatures
ChCh [15] 320 bits 49.1 ms 3.93 ms
Waters [38] 480 bits 91.2 ms 9.44 ms
Hess [22] 1120 bits 49.1 ms 6.70 ms
Anonymous Signatures
BBS [6] Group signature (modified per §4.1) 2400 bits 139.0 ms 24.80 ms
CYH [19] Ring signature, 2-member ring 480 bits 52.0 ms 6.03 ms
CYH [19] Ring signature, 20-member ring 3360 bits 86.5 ms 43.93 ms
∗Verification time per signature when batching 200 signatures.

Figure 1: Cryptographic overhead and verification time for some of the pairing-based signatures
described in this work. For this summary table, all schemes were implemented in a 160-bit MNT
elliptic curve. See section 4 for a description of all signature schemes considered and section 5 for
full experimental results.

was the best method known to us. Recently, Law and Matt [24] proposed three new techniques
for finding invalid signatures in a batch. One of their techniques allows to save approximately half
the time needed by the simple divide-and-conquer approach, for large batch sizes. Thus, while our
numbers seem good, they can be further improved.

Overall, we conclude that many interesting short signatures can be batch verified, and that
batch verification is an extremely valuable tool for system implementors. As an example of our
results in section 5, for the short group signatures of Boneh, Boyen and Shacham [6], we see that
when batching 200 group signatures (in a 160-bit MNT curve) individual verification takes 139ms
whereas batch verification reduces the cost to 25ms per signature (see Figure 1).

2 Algebraic Setting: Pairings

Let PSetup be an algorithm that, on input the security parameter 1τ , outputs the parameters for a
bilinear pairing as (q, g1, g2,G1,G2,GT , e), where G1 = 〈g1〉,G2 = 〈g2〉 and GT are of prime order
q ∈ Θ(2τ ). The efficient mapping e : G1 × G2 → GT is both: (bilinear) for all g ∈ G1, h ∈ G2

and a, b ← Zq, e(ga, hb) = e(g, h)ab; and (non-degenerate) if g generates G1 and h generates G2,
then e(g, h) 6= 1. This is called the asymmetric setting. A specialized case is the symmetric setting,
where G1 = G2. We will always write group elements in the multiplicative notation, although the
groups G1 and G2 are actually implemented as additive groups.

Since we are looking at various schemes based on these groups, we are interested in groups
that have the smallest representation of the group elements, we want to know if schemes in the
symmetric setting can be moved over to the asymmetric setting and finally want to be able to verify
whether a given element is a member of a specific group.

2.1 Size of Group Elements

Pairings are constructed such that G1 and G2 are groups of points on some elliptic curve E, and
GT is a subgroup of a multiplicative group over a related finite field. All groups have order q.
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The group of points on E defined over Fp is written as E(Fp). Usually it is the case that G1 is
a subgroup of E(Fp), G2 is a subgroup of E(Fpk) where k is the embedding degree, and GT is a
subgroup of F∗

pk
. In the symmetric case G1 = G2 is usually a subgroup of E(Fp).

In the following, we use numbers for security comparable to 1024 bit RSA. The MOV attack
by Menezes, Vanstone and Okamoto states that solving the discrete logarithm problem on a curve
reduces to solving it over the corresponding finite field [27]. Hence the size of pk must be comparable
to that of an RSA modulus to provide the same level of security, so elements of Fpk must be of size
1024. But the size of the finite field is not the only thing that matters for security. The group order
q must also be large enough to resist the Pollard-ρ attack on discrete logarithms, which means
that q ≥ 160. Now assume that |p| = |q| = 160, then we would need an embedding degree k = 6
to get the size of the corresponding field close to the required 1024 bits. However, we could also
let |q| = 160, |p| = 512, and choose k = 2 to achieve the same. Both these options have their
advantages and disadvantages as discussed by Koblitz and Menezes [23].

We have talked about how many bits are required to represent elements in the finite fields, but
what about the groups G1 and G2? Since they are subgroups of a curve over the field, they are
represented by their coordinates (x, y) which are elements of the field, and hence one would expect
their size to be twice the size of an element in the field. However one only needs to represent x
and the LSB of y in order to recompute y later. Also, in some cases (when G2 is the trace zero
subgroup) elements of G2 can be represented as elements of the field E(Fpk/2) instead, which would
only require half the space [23].

In the asymmetric setting, the best we can hope for are group elements in G1,G2 and GT of
size 160, 512 and 1024 bits respectively. In the symmetric setting it seems the best curve is a
supersingular curve with k = 2, which means that elements of G1 = G2 and GT will be of size 512
and 1024 bits respectively. Finally, an important thing to keep in mind is that no matter the order
of the groups, performance is dominated by the operations in the underlying finite field.

2.2 From Symmetric to Asymmetric

If one wants to go from the symmetric to the asymmetric setting to take advantage of the small
group elements in G1, there are a few pitfalls one should be aware of. In some asymmetric groups
it is not possible to hash into G2, but in these groups there exist a isomorphism from G2 to G1.
In other groups there is no such isomorphism, but it is possible to hash into G2. So if a scheme
requires both for the security proof, that scheme cannot be realized in the asymmetric setting. See
Galbraith, Paterson and Smart [20] for more.

2.3 Testing Membership

Our proofs will require that elements of purported signatures are members of G1, but how efficiently
can this fact be verified? Determining whether some data represents a point on a curve is easy. The
question is whether it is in the correct subgroup. Assume that the subgroup has order q. The easy
way to verify if y ∈ G1 is simply to test yq = 1. Since q might be quite large this test is inefficient,
but as we will see later the time required to test membership of group elements are insignificant
compared to the time required to do the pairings in the applications we have in mind. Yet, in some
cases, there are more efficient ways to test group membership [18].

3 Basic Tools for Pairing-Based Batch Verification

We now provide some basic observations to determine when pairing equations can be batch verified.
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Let us begin with a formal definition of pairing based batch verifier. Recall that PSetup is
an algorithm that, on input the security parameter 1τ , outputs the parameters (q, g1, g2,G1,G2,
GT , e), where G1,G2,GT are of prime order q ∈ Θ(2τ ). Pairing-based verification equation are
represented by a generic pairing based claim X corresponding to a boolean relation of the following
form:

∏k
i=1 e(fi, hi)ci

?= A, for k ∈ poly(τ) and fi ∈ G1, hi ∈ G2 and ci ∈ Z∗q , for each i = 1, . . . , k.
A pairing-based verifier Verify for a generic pairing-based claim is a probabilistic poly(τ)-time
algorithm which on input the representation 〈A, f1, . . . , fk, h1, . . . , hk, c1, . . . , ck〉 of a claim X,
outputs accept if X holds and reject otherwise. We define a batch verifier for pairing-based claims.

Definition 3.1 (Pairing-based Batch Verifier)
Let PSetup(1τ ) → (q, g1, g2,G1,G2,GT , e). For each j ∈ [1, η], where η ∈ poly(τ), let X(j) be a
generic pairing-based claim and let Verify be a pairing based verifier. We define a pairing-based
batch verifier for Verify as a probabilistic poly(τ)-time algorithm which outputs:

• accept if X(j) holds for all j ∈ [1, η];
• reject if X(j) does not hold for any j ∈ [1, η] except with negligible probability.

3.1 Small Exponents Test Applied to Pairings

Bellare, Garay and Rabin proposed methods for verifying multiple equations of the form yi = gxi

for i = 1 to n, where g is a generator for a group of prime order [4]. One might be tempted to
just multiply these equations together and check if

∏n
i=1 yi = g

Pn
i=1 xi . However, it would be easy

to produce two pairs (x1, y1) and (x2, y2) such that the product of them verifies correctly, but each
individual verification does not, e.g. by submitting the pairs (x1 − α, y1) and (x2 + α, y2) for any
α. Instead, Bellare et al. proposed the following method, which we will later apply to pairings.

Small Exponents Test: Choose exponents δi of (a small number of) `b bits and compute∏n
i=1 y

δi
i = g

Pn
i=1 xiδi . Then the probability of accepting a bad pair is 2−`b . The size of `b is a

tradeoff between efficiency and security. (In Section 5, we set `b = 80 bits.)

Theorem 3.2 Let PSetup(1τ ) → (q, g1, g2,G1,G2,GT , e) where q is prime. For each j ∈ [1, η],
where η ∈ poly(τ), let X(j) corresponds to a generic claim as in Definition 3.2. For simplicity,
assume that X(j) is of the form A

?= Y (j) where A is fixed for all j and all the input values to the
claim X(j) are in the correct groups. For any random vector ∆ = (δ1, . . . , δη) of `b bit elements from
Zq, an algorithm Batch which tests the following equation

∏η
j=1A

δj ?=
∏η
j=1 Y

(j)δj is a pairing-based
batch verifier that accepts an invalid batch with probability at most 2−`b.

Proof. The proof closely follows the proof of the small exponents test by Bellare et al. [4], but for
completeness we include a full proof of this theorem in Appendix A.1 2

Thus, Theorem 3.2 provides a single verification equation, which we then want to optimize.
1A natural question to ask is if this batch verifier also works for composite order groups. Unfortunately the answer

is not straightforward. The reason for requiring a prime order group, is that for the proof of the small exponents test
to go through, we need an element β1 to have an inverse in Zq, which is the case if gcd(β1, q) = 1. If q is prime this is
always the case, but what if q is composite? If q = p1p2, where p1, p2 are primes, then this is the case except when β1

is a multiple of p1, p2 or q. If β1 is chosen at random it is very unlikely that an inverse does not exist, and the small
exponents test will work in almost all cases. However, this really depends on the signature scheme, so if one wants
to apply this method to a scheme set in a composite order group, one should examine the proof in Appendix A and
make sure that it still applies to the chosen scheme.
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3.2 Basic Batching Techniques

Armed with Theorem 3.2, let’s back up for a moment to get a complete picture of how to develop
an efficient batch verifier. This summarizes the ideas we used to obtain the results in Figure 2,
which we believe will be useful elsewhere. Immediately after the summary, we’ll explain the details.

Summary: Suppose you have η bilinear equations, to batch verify them, do the following:

1. Apply Technique 1 to the individual verification equation, if applicable.
2. Apply Theorem 3.2 to the equations. This combines all equations into a single equation after

checking membership in the expected algebraic groups and using the small exponents test.
3. Optimize the resulting single equation using Techniques 2, 3 and 4.
4. If batch verification fails, use the divide-and-conquer approach to identify the bad signatures.

Technique 1 Change the verification equation. Recall that a Σ-protocol is a three step protocol
(commit, challenge, response) allowing a prover to prove various statements to a verifier. Using the
Fiat-Shamir heuristic a Σ-protocol can be turned into a signature scheme, by forming the challenge
as the hash of the commitment and the message to be signed. The signature is then either (commit,
response) or (challenge, response). The latter is often preferred, since the challenge is usually smaller
than the commitment, which results in a smaller signature. However, we observed that this often
causes batch verification to become very inefficient, whereas using (commit, response) results in a
much more suitable verification equation.

We use this technique to help batch the Hess IBS [22] and the group signatures of Boneh, Boyen
and Shacham [6] and Boyen and Shacham [10]. Indeed, we believe that prior attempts to batch
verify group signatures overlooked this idea and thus came up without efficient solutions.

Combination Step: Given η pairing-based claims, apply Theorem 3.2 to obtain a single equation.
The combination step actually consist of two substeps:

1. Check Membership: Check that all elements are in the correct subgroup. Only elements that
could be generated by an adversary needs to be checked (e.g., elements of a signature one
wants to verify). Public parameters need not be checked, or could be checked only once.

2. Small Exponents Test: Combine all equations into one and apply the small exponents test.

Next, optimize this single equation using any of the following techniques in any order.

Technique 2 Move the exponent into the pairing. When a pairing of the form e(gi, hi)δi appears,
move the exponent δi into e(). Since elements of G are usually smaller than elements of GT , this
gives a small speedup when computing the exponentiation.

Replace e(gi, hi)δi with e(gδii , hi)

Remember that it is also possible to move an exponent out of the pairing, or move it between the
two elements of the pairing. In some cases, this allows for further optimizations.

Technique 3 When two pairings with a common first or second element appear, they can be com-
bined. This can reduce η pairings to one. It will work like this:

Replace
η∏
i=1

e(gδii , h) with e(
η∏
i=1

gδii , h)
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When batching η instances using Theorem 3.2 this will reduce η pairings to one. This is also worth
keeping in mind when designing schemes, or picking schemes that one wants to batch verify. Pick
a scheme so that when e(g, h) appears in the verification equation, g or h is fixed.

In rare cases, it might be useful to apply this technique “in reverse”, e.g., splitting a single
pairing into two or more pairings to allow for the application of other techniques. For example, we
do this when batching Boyen’s ring signatures [11], so that we can apply Technique 4 below.

Technique 4 Waters hash. In his IBE, Waters described how hash identities to values in G1 [38],
using a technique that was subsequently employed in several signature schemes. Assume the identity
is a bit string V = v1v2 . . . vm, then given public parameters u1, . . . , um, u

′ ∈ G1, the hash is
u′
∏m
i=1 u

vi
i . Following works by Naccache [30] and Chatterjee and Sarkar [16, 17] documented the

generalization where instead of evaluating the identity bit by bit, divide the k bit identity bit string
into z blocks, and then hash. (In Section 5, we SHA1 hash our messages to a 160-bit string, and
use z = 5 as proposed in [30].) Recently, Camenisch et al. [13] pointed out the following method:

Replace
η∏
j=1

e(gj ,
m∏
i=1

u
vij
i ) with

m∏
i=1

e(
η∏
j=1

gj
vij , ui)

In this work, we apply this technique to schemes with structures related to the Waters hash; namely,
the ring signatures of Boyen [11] and the aggregate signatures of Lu et al. [25].

3.3 Handling Invalid Signatures

If there is even a single invalid signature in the batch, then the batch verifier will reject the entire
batch with high probability. In many real-world situations, a signature collection may contain
invalid signatures caused by accidental data corruption, or possibly malicious activity by an ad-
versary seeking to degrade service. The ratio of invalid signatures to valid could be quite small,
and yet a standard batch verifier will reject the entire collection. In some cases, this may not be a
serious concern. E.g., sensor networks with a high level of redundancy may choose to simply drop
messages that cannot be efficiently verified. Alternatively, systems may be able to cache and/or
individually verify important messages when batch verification fails. Yet, in some applications, it
might be critical to tolerate some percentage of invalid signatures without losing the performance
advantage of batch verification.

In Section 5.2, we employ a recursive divide-and-conquer approach, similar to that of Pastuszak,
Pieprzyk, Michalek and Seberry [32], as: First, shuffle the incoming batch of signatures, and if batch
verification fails, simply divide the collection into two halves, and recurse on the halves. When this
process terminates, the batch verifier outputs the index of each invalid signature. Through careful
implementation and caching of intermediate results, much of the work of the batch verification
(i.e., computing the product of many signature elements) can be performed once over the full
signature collection, and need not be repeated when verifying each sub-collection. Thus, the cost
of each recursion is dominated by the number of pairings used in the batch verification algorithm.
In Section 5.2, we show that even if up to 15% of the signatures are invalid, this technique still
performs faster than individual verification.

Recently, Law and Matt [24] proposed three new techniques for finding invalid signatures in
a batch. One of their techniques, which is the most efficient for large batch sizes, allows to save
approximately half the time needed by the simple divide-and-conquer approach. Thus, it is possible
to do even better than the performance numbers we present.
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Scheme Model Individual-Verify Batch-Verify Reference Techniques
Group Signatures
BBS [6] RO 5η 2 §4.1 1,2,3
BS [10] RO 5η 2 §4.1 1,2,3
ID-based Ring Signatures
CYH [19] RO 2η 2 §4.2 2,3
Ring Signatures
Boyen [11] (same ring) plain ` · (η + 1) min{η · `+ 1, 3 · `+ 1} §4.2 2,3,4
Signatures
BLS [9] RO 2η s+ 1 [9] 2,3
CHP [13] (time restrictions) RO 3η 3 [13] 2,3
ID-based Signatures
Hess [22] RO 2η 2 §4.3 1,2,3
ChCh [15] RO 2η 2 [24] 2,3
Waters [38, 30, 12, 17] plain 3η min{(2η + 3), (z + 3)} [13] 2,3,4
Aggregate Signatures
BGLS [7] (same users) RO η(`+ 1) `+ 1 §4.4 2,3
Sh [37] (same users) RO η(`+ 2) `+ 2 §4.4 2,3
LOSSW [25] (same sequence) plain η(`+ 1) min{(η + 2), (` · k + 3)} §4.4 2,3,4

Figure 2: Signatures with Efficient Batch Verifiers. Let η be the number of signatures to
verify, s be the number of distinct signers involved and ` be either the size of a ring or the size of
an aggregate. Boyen batch verifier requires each signature to be issued according to the same ring.
Aggregate verifiers work for signatures related to the same set of users. In CHP, only signatures
from the same time period can be batched and z is a (small) parameter (e.g., 8). In LOSSW, k is
the message bit-length. RO stands for random oracle.

4 Batch Verifiers for Short Signatures

We now show how to batch verify a selection of existing regular, identity-based, group, ring, and
aggregate signature schemes. To our knowledge, these are the first such verifiers for group, ring
and aggregate signatures. After a search through the existing literature, we are presenting only
the schemes with the best results (although we often note common schemes that do not appear to
batch well.) Figure 2 shows a summary of our results.

4.1 Short Group Signatures

The short group signatures of Boneh, Boyen and Shacham (BBS) [6] and Boneh and Shacham
(BS) [10] do not appear to batch well without making some alterations in both the signatures and
their verification equations. We show how to do this to achieve a batch verifier which requires only
2 pairings at the cost of a small increase in the signature size.

Recall that a group signature scheme allows any member to sign on behalf of the group in
such a way that anyone can verify a signature using the group public key while nobody, but the
group manager, can identify the actual signer. A group signature scheme consists in four algorithm:
KeyGen, Sign, Verify and Open, that, respectively generate public and private keys for users and the
group manager, sign a message on behalf of a group, verify the signature on a message according
to the group and trace a signature to a signer. For our purposes, we focus on the verification
algorithm.
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The Boneh-Boyen-Shacham (BBS) Group Signatures. Let PSetup(1τ )→ (q, g1, g2,G1,G2,
GT , e), where H : {0, 1}∗ → Zq is a hash function and there exists an efficiently-computable
isomorphism ψ : G2 → G1. Let ` be the number of users in a group.

The BBS scheme requires a computable isomorphism ψ : G2 → G1 since their definition of the
SDH assumption is based on it, but such an isomorphism does not exist for the MNT curves we use
in Section 5. Boneh and Boyen recently gave a definition which doesn’t require said isomorphism [5].

KeyGen. The group manager sets the keys as:

1. Select a random g2 ∈ G2 and set g1 ← ψ(g2).
2. Select h $← G1 \ {1G1}, r1, r2

$← Z∗q , and set u, v such that ur1 = vr2 = h.

3. Select γ $← Z∗q , and set w = gγ2 .

4. For i = 1 to n, select xi
$← Z∗q , and set fi = g

1
γ+xi
1 .

The public key is gpk = (g1, g2, h, u, v, w), the group manager’s secret key is gmsk = (r1, r2)
and the secret key of the i’th user is gsk[i] = (fi, xi).

Sign. Given a group public key gpk = (g1, g2, h, u, v, w), a user private key (f, x) and a message
M ∈ {0, 1}∗, compute the signature σ as follows:

1. Select α, β, rα, rβ, rx, rγ1 , rγ2

$← Zq.
2. Compute T1 = uα; T2 = vβ; T3 = f · hα+β.
3. Compute γ1 = x · α and γ2 = x · β.
4. Compute R1 = urα ; R2 = vrβ ;
R3 = e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rγ1−rγ2 ; R4 = T rx1 · u−rγ1 ; R5 = T rx2 · v−rγ2 .

5. Compute c = H(M,T1, T2, T3, R1, R2, R3, R4, R5).
6. Compute sα = rα+c ·α; sβ = rβ +c ·β; sx = rx+c ·x; sγ1 = rγ1 +c ·γ1; sγ2 = rγ2 +c ·γ2.
7. Signature is σ = (T1, T2, T3, c, sα, sβ, sx, sγ1 , sγ2).

Verify. Given a group public key gpk = (g1, g2, h, u, v, w), a message M and a group signature
σ = (T1, T2, T3, c, sα, sβ, sx, sγ1 , sγ2), compute the values

R1 = usα · T−c1 ; R2 = vsβ · T−c2 ;
R3 = e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 ·(

e(T3, w) · e(g1, g2)−1
)c ;

R4 = T sx1 · u
−sδ1 ; R5 = T sx2 · v

−sδ2 .

Accept iff c
?= H(M,T1, T2, T3, R1, R2, R3, R4, R5).

An Efficient Batch Verifier for BBS Group Signatures.
Computing R3 is the most expensive part of the verification above, but at first glance it is not

clear that this can be batched, because each R3 is hashed in the verification equation. However,
as described by Technique 1, the signature and the verification algorithm can be modified at the
expense of increasing the signature size by one element. Let σ = (T1, T2, T3, R3, c, sα, sβ, sx, sγ1 , sγ2)
be the new signature, together with:

New Individual Verify. Given a group public key gpk = (g1, g2, h, u, v, w), a message M and a
group signature σ = (T1, T2, T3, R3, c, sα, sβ, sx, sγ1 , sγ2), compute the values R1 ← usα ·T−c1 ;

9



R2 ← vsβ · T−c2 ; R4 ← T sx1 · u−sγ1 ; R5 ← T sx2 · v−sγ2 , then check the following equation

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sγ1−sγ2 ·(
e(T3, w) · e(g1, g2)−1

)c ?= R3. (1)

Finally check if c ?= H(M,T1, T2, T3, R1, R2, R3, R4, R5). Accept if all checks succeed, else
reject.

Now we define a batch verifier, where the main objective is to use a constant number of pairings.

BBS Batch Verify. Let gpk = (g1, g2, h, u, v, w) be the group public key, and let σj = (Tj,1, Tj,2,
Tj,3, Rj,3, cj , sj,α, sj,β, sj,x, sj,γ1 , sj,γ2) be the j’th signature on the message Mj , for each
j = 1, . . . , η. For each j = 1, . . . , η, compute the following values:

Rj,1 ← usj,α · T−cjj,1 Rj,2 ← vsj,β · T−cjj,2

Rj,4 ← T
sj,x
j,1 · u

−sj,γ1 Rj,5 ← T
sj,x
j,2 · v−sj,γ2

Now for each j = 1, . . . , η, check the following:

cj
?= H(Mj , Tj,1, Tj,2, Tj,3, Rj,1, Rj,2, Rj,3, Rj,4, Rj,5)

Then check the following single pairing based equation

e(
η∏
j=1

(T sj,xj,3 · h
−sj,γ1

−sj,γ2 · g−cj1 )δj , g2) ·

e(
η∏
j=1

(h−sj,α−sj,β · T c3 )δj , w) ?=
η∏
j=1

R
δj
j,3. (2)

where (δ1, . . . , δη) is a random vector of `b bit elements from Zq. Accept if and only if all
checks succeed.

Theorem 4.1 For security level `b, the above algorithm is a batch verifier for the BBS group
signature scheme, where the probability of accepting an invalid signature is 2−`b.

Proof sketch. Let gpk = (g1, g2, h, u, v, w) be the group public key, and let σj = (Tj,1, Tj,2, Tj,3, Rj,3,
c, sj,α, sj,β, sj,x, sj,γ1 , sj,γ2) be the j’th signature on the message Mj , for each j = 1, . . . , η. Since
the BBS Batch Verify algorithm performs the same tests as the New Individual Verify algorithm for
each signature separately, we just need to prove that equation 2 is a batch verifier for equation 1.
From Theorem 3.2, for any random vector (δ1, . . . , δη) of `b bit elements from Zq, the following
equation

η∏
j=1

(e(Tj,3, g2)sj,x · e(h,w)−sj,α−sj,β · e(h, g2)−sj,γ1
−sj,γ2 ·

(
e(Tj,3, w) · e(g1, g2)−1

)cj )δj ?=
η∏
j=1

R
δj
j,3

(3)

is a batch verifier for the pairing based equation 1. It is easy to see that equation 3 is equivalent
to equation 2. Indeed, equation 2 is an optimized version of equation 3 obtained by applying
techniques 2 and 3. 2
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The Boneh-Shacham (BS) Group Signatures As we point out in Figure 2, the (even shorter)
group signatures of Boneh and Shacham [10] can also be batch verified using techniques similar to
those above. The BS scheme includes a feature known as verifier local revocation (VLR), which
allows verifiers to discard signatures from revoked signers. Unfortunately, the checks required to
test for revoked signers cannot easily be batched. Thus, our batch verifier omits them. Since VLR
is not a “traditional” property of a group signature (e.g., [2, 6]), the resulting batch verifier is still
quite useful for applications where only a standard group signature is needed. Note that verifiers
may still perform revocation checks using the non-batched verify algorithm and the group manager
can still recover the signer’s identity in case of misbehavior. An interesting open problem would be
to create a group signature scheme that simultaneously supports both VLR and an efficient batch
verification.

Performance and Signature Length. The BBS batch verifier is suitable to verify many sig-
natures issued by many group members on different messages. The original BBS signature consists
of three elements of G1 and six elements of Zq while its modified version, needed to construct
the BBS batch verifier, requires three elements of G1, one element of GT , and six elements of Zq.
When implemented in the 170-bit MNT curve proposed by Boneh et al., this results in a signature
representation of approximately 2553 bits with security approximately equivalent to 1024-bit RSA.
This is still shorter than the comparable (non-pairing) scheme of Ateniese, Camenisch, Joye, and
Tsudik [2] which achieves a similar security level at a cost of at least 3872 bits. For applications
where bandwidth is at a premium, it is desirable to use the extremely short group signature of
Boneh and Shacham [10] which is suitable to construct a batch verifier that requires only two pair-
ing operations. With appropriate modifications to permit batching, a BS signature results in four
elements of G1, one element of GT , and four elements of Zq which can be represented in 2,384 bits.

4.2 Ring and Identity-based Ring Signature Schemes

A ring signature scheme allows a signer to sign a message on behalf of a set of users which include
the signer herself in such a way that a verifier is convinced that the signer is one of the ring
members, but he cannot tell which member is the actual signer. A ring signature is a triple of
algorithms KeyGen, Sign and Verify, that, respectively generate public and private keys for a user,
sign a message on behalf of the ring and verify the signature on a message according to the ring.

In an identity-based ring signature, a user can choose an arbitrary string, for example her
email address, as her public key. The corresponding private key is then created by binding such
a string which represents the user’s identity with the master key of a trusted party called private
key generator (PKG). Such a scheme consists of four algorithms: Setup, KeyGen, Sign and Verify.
During Setup, the PKG sets the system parameters Ppub and chooses a master secret key msk.
During KeyGen, the PKG gives the user a secret key based on her identity string. Then the signing
and verification algorithms operate as before, except that only Ppub and the ring members identities
are needed in place of their public keys.

Figures 3 and 4 summarize the two schemes we consider and how to batch them, respectively.2

The CYH scheme is fairly straightforward to batch, while the Boyen scheme required more creativity,
especially in the application of techniques 3 and 4.

2In the course of the study, we noticed that the identity-based ring signature scheme proposed in [3] is a very
nice candidate for batch verification. Unfortunately, we found that, for ring size greater than two, the security proof
has a flaw. After hearing of this proof flaw, Brent Waters translated it into an attack on the scheme (personal
communication). It is still open to see if such a scheme is indeed secure for rings of size two.
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Scheme
Setup
Key Generation

Signature Verify

CYH

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )
H1 : {0, 1}∗ → G1

H2 : {0, 1}∗ → Z∗q
α

$← Z∗q
msk ← α
Ppub ← gα

sk ← H1(ID)α

pk ← H1(ID)

Let L = {ID1, ID2, . . . , ID`}
Let IDs be the signer
∀i ∈ [1, `] s.t. i 6= s

ui
$← G1

hi ← H2(M ||L||ui)
r

$← Zq

us ← pkrs ·

∏
i 6=s

ui · pkhii

−1

hs ← H2(M ||L||us)
S = skhs+rs

σ ← (u1, . . . , u`, S)

Let σ = (u1, . . . , u`, S)

∀i ∈ [1, `]

hi ← H2(M ||L||ui)

e(
∏̀
i=1

ui · pkhii , Ppub)
?= e(S, g2)

Boyen

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )
H : {0, 1}∗ → Z∗q
ψ : G2 → G1

Â0, B̂0, Ĉ0
$← G2

a, b, c
$← Z∗q

A← ga1 ; B ← gb1; C ← gc1
Â← ga2 ; B̂ ← gb2; Ĉ ← gc2
sk ← (a, b, c)
pk ← (A,B,C, Â, B̂, Ĉ)

Let L = {pk1, pk2, . . . , pk`}
where pki = (Ai, Bi, Ci, Âi, B̂i, Ĉi)
W.l.o.g., let pk` be the signer
s0, s1, . . . , s`−1, t0, t1, . . . , t`

$← Zq
∀i ∈ [0, `− 1], Si ← gsi1
d← 1

a`+b`·M+c`·t`

S`←

(
g ·
`−1∏
i=0

(Ai ·BMi ·C
ti
i )−si

)d
σ = (S0, . . . , S`, t0, . . . , t`)

Let σ=(S0, . . . , S`, t0, . . . , t`)

Let D = e(g1, g2)∏̀
i=0

e(Si, Âi ·B̂i
M
·Ĉi

ti) ?=D

Figure 3: Ring signature schemes that we consider. We denote by Ppub, sk and pk the system
parameters, user private key and user public key, respectively. Moreover, we denote with pki and
ski the public and private keys of the i-th user in the ring. A ring signature on a message M is
denoted by σ and ` represents the ring size.

Scheme
Batch Verification Precomputation

Batch Verification Equation
Techniques

CYH

Let σj = (uj,1, . . . , uj,`, Sj) and Lj = {IDj,1, . . . , IDj,`j}; ∀i, j hj,i ← H2(Mj ||Lj ||uj,i)

e(
∏η
j=1

∏`j
i=1(uj,i · pk

hj,i
j,i )δj , Ppub) = e(

∏η
j=1 Sj , g2)

2,3

Boyen

Let σj = (Sj,0, . . . , Sj,`, tj,0, . . . , tj,`), pki ← (Ai, Bi, Ci, Âi, B̂i, Ĉi) and D = e(g1, g2)

If η < 3,
∏η
j=1

∏`
i=0 e(Sδjj,i, Âi · B̂i

mj,i · Ĉi
tj,i) =

∏η
j=1D

δj

Otherwise,
∏`
i=0

(
e(
∏η
j=1 S

δj
j,i, Âi)·e(

∏η
j=1 S

δj·mj,i
j,i , B̂i)·e(

∏η
j=1 S

δj·tj,i
j,i , Ĉi)

)
=
∏η
j=1D

δj

2,3,4

Figure 4: Batch verifier for the ring signature and ID-based ring signature schemes we
consider. Let η be the number of signatures to verify and Mj be the message corresponding to the
j’th signature σj . With pkj,i and `j we denote the public key of the i’th ring member and the size
of the ring associated to the j’th signature, respectively. The vector (δ1, . . . , δη) in Zq is required
by the small exponents test.

4.3 Signature and Identity-based Signature Schemes

In this section, for completeness, we first review some previously known short signature schemes
and their corresponding batch verifiers. In 2001, Boneh, Lynn and Shacham [9] proposed the first
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Scheme
Setup
Key Generation

Signature
Verification Precomputation

Verification Equation

BLS

(q, g1, g2,G1, G2,GT , e)← PSetup(1τ )
H : {0, 1}∗ → G
α

$← Zq
sk ← α; pk ← gα2

σ ← H(M)sk
e(H(M), pk) ?= e(σ, g2)

CHP

Let Φ be the set of time periods.
(q, g1, g2,G1,G2,GT , e)← PSetup(1τ )
H1 : Φ→ G1, H2 : Φ→ G1

H3 : {0, 1}∗ × Φ→ Zq
α

$← Zq
sk ← α; pk ← gα2

a← H1(φ)
h← H2(φ)
b← H3(M ||φ)
σ ← ask · hsk·b

a← H1(φ);h← H2(φ); b← H3(M ||φ)

e(σ, g2) ?= e(a, pk) · e(h, pk)b

Figure 5: Signature Schemes that we consider. We denote by pk and sk the public key and
the private key of a user, respectively. We denote by σ a signature on a message M . In CHP, φ is
a time period in the set of time periods Φ.

short pairing-based signature scheme which is secure against existential forgery under adaptive
chosen message attack in the random oracle model. We’ll refer to this scheme as BLS.

Scheme
Batch Verification Precomputation

Batch Verification Equation
Techniques

BLS ∏s
i=1 e(

∏ini
`=i1

H(M`)δ` , pki)
?= e(

∏η
j=1 σ

δj
j , g2)

2,3

CHP

a← H1(φ);h← H2(φ); ∀j ∈ [1, η], bj ← H3(Mj ||φ)

e(
∏η
j=1 σ

δj
j , g2) ?= e(a,

∏η
j=1 pk

δj
j ) · e(h,

∏η
j=1 pk

bj ·δj
j )

2,3

Figure 6: Batch verifiers for the signature schemes we consider. Let η be the number of
signatures to verify. With pkj we denote the public key of the user who issued the j’th signature.
The vector (δ1, . . . , δη) in Zq is required by the small exponents test. In BLS, s is the number of
different signer and ni is the number of signatures issued by the i’th signer (for details see the text).
In CHP, φ is a time period in the set of time periods Φ.

As also noticed by the authors, BLS is suitable to verify a bunch of purported signatures either
issued from the same signer on different messages or by different public keys on the same message
in a faster way than simply verifying each signature separately. Indeed, consider η BLS signatures
σ1, . . . , ση issued by means of the BLS signature algorithm (see Figure 5) under the same public key
pk on different messages M1. . . . ,Mη. According to the BLS verification equation (see Figure 5),
2η pairing evaluations are needed to verify each equation separately, while applying techniques 2
and 3, only two pairing evaluations suffice: e(

∏η
j=1H(Mj)δj , pk) = e(

∏η
j=1 σ

δj
j , g2), for some vector

(δ1, . . . , δη) in Zq. In Figure 6, we consider batching different messages from s different signers.
Here BLS batch verification equation requires s+ 1 pairing evaluations.

Camenisch, Hohenberger and Pedersen [13] proposed a signature scheme secure of the same size
as BLS also secure in the random oracle model. We’ll refer to this as CHP. This scheme allows
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Scheme
Setup
Key Generation

Sign
Verification Precomputation

Verification Equation

ChCh

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )
H1 : {0, 1}∗ → G1

H2 : {0, 1}∗ ×G1 → Zq
α

$← Zq
msk ← α; Ppub ← gα2
sk ← H1(ID)α; pk ← H1(ID)

s
$← Zq

S1 ← pks

a← H2(M ||S1)
S2 ← sks+a

σ ← (S1, S2)

Let σ = (S1, S2), a← H2(M ||S1)

e(S2, g2) ?= e(S1 · pka, Ppub)

Hess

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )
H1 : {0, 1}∗ → G
H2 : {0, 1}∗ ×GT → Zq
α

$← Zq
msk ← α; Ppub ← gα2
sk ← H1(ID)α; pk ← H1(ID)

h
$← G

s
$← Zq

S1 ← e(h, g2)s

a← H2(M ||S1)
S2 ← ska · hs
σ ← (S1, S2)

Let σ = (S1, S2), a← H2(M ||S1)

e(S2, g2) ?= e(pk, Ppub)a · S1

Waters

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )
α

$← Zq; h
$← G1

A← e(h, g2)α

y′1, y
′
2, y1, y2, . . . , yz

$← Zq
u′1 ← g

y′1
1 ; u′2 ← g

y′2
1

∀` ∈ [1, z], u` ← gy`1
û1
′ ← g

y′1
2 ; û2

′ ← g
y′2
2

∀` ∈ [1, z], û` ← gy`2
msk ← hα

Ppub ← (A, u′1, u
′
2, u1, . . . , uz,

û1
′, û2

′, û1, . . . , ûz)
r

$← Zq
k1 ← hα · (u′1 ·

∏z
i=1u

κi
i )r

k2 ← g−r1

sk ← (k1, k2)

s
$← Zq

S1 ← k1 ·(u′2 ·
z∏
i=1

umii )s

S2 ← k2

S3 ← g−s1

σ ← (S1, S2, S3)

Let σ = (S1, S2, S3) and A = e(h, g2)α

e(S1, g2)·e(S2, û1
′ ·

z∏
i=1

ûi
κi)·e(S3, û2

′ ·
z∏
i=1

ûi
mi) ?=A

Figure 7: Identity-based signature schemes that we consider. We denote by msk, Ppub, sk
and pk the master key, the system parameters, user private key and user public key, respectively.
We denote by σ a signature on a message M . In Waters, z is the number of `-bit chunks. Moreover,
the identity ID and the message M are parsed as κ1, . . . , κz and m1, . . . ,mz, respectively.

efficient batch verification of signatures made by different signers provided that all signatures have
been issued during the same period of time. Since the values g2, a and h are the same for all
signatures, from techniques 2 and 3, the CHP batch verification equation shown in Figure 6 requires
only three pairings.

In the following we focus on batch verification for identity-based signature schemes. An identity
based signature scheme consists of four algorithms: Setup, Key Generation, Sign and Verify. The
public key generator PKG initializes the system during the Setup phase by choosing the system
parameters Ppub which are made public. Moreover, the PKG chooses a master key msk and keeps
it secret. The master key is used in the key generation phase along with the identity of a user to
compute the user’s private key. A user can sign a message by using the Sign algorithm. Finally, a
verifier can check a signature on a message by using the Verify algorithm on input the signature,
the public parameters and the identity of the signer. In Figure 7 we summarize the identity-based
signature schemes we consider.
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Scheme
Batch Verification Precomputation

Batch Verification Equation
Techniques

ChCh

Let σj = (Sj,1, Sj,2). ∀j ∈ [1, η], aj ← H2(Mj ||Sj,1)

e(
∏η
j=1 S

δj
j,2, g2) ?= e(

∏η
j=1(Sj,1 · pk

aj
j )δj , Ppub)

2,3

Hess

Let σj = (Sj,1, Sj,2). ∀j ∈ [1, η], aj ← H2(Mj ||Sj,1)

e(
∏η
j=1 S

δj
j,2, g2) ?= e(

∏η
j=1 pk

aj ·δj
j , Ppub) ·

∏η
j=1 S

δj
j,1

2,3

Waters

Let σj = (Sj,1, Sj,2, Sj,3) and Ppub = (A, u′1, u
′
2, u1, . . . , uz, û1

′, û2
′, û1, . . . , ûz)

If z > 2η − 2,

e(
∏η
j=1 Sj,1, g2) ·

∏η
j=1

(
e(Sδjj,1, û1

′∏z
i=1 ûj

kj,i) · e(Sδjj,3, û2
′∏z

i=1 ûj
mj,i)

)
?= A

Pη
j=1 δj

Otherwise,

e(
∏η
j=1S

δj
j,1, g2)·e(

∏η
j=1S

δj
j,2, û1

′)·e(
∏η
j=1S

δj
j,3, û2

′)·
∏z
i=1e(

∏η
j=1(S

kj,i
j,2 · S

mj,i
j,3 )δj , ûi)

?=A
Pη
j=1 δj

2,3, 4

Figure 8: Batch verifiers for the identity-based signature schemes we consider. Let η be
the number of signatures to verify. With pkj we denote the public key of the user who issued the
j’th signature σj on message Mj . The vector (δ1, . . . , δη) in Zq is required by the small exponents
test. In CHP-2, z is the number of `-bit chunks. Moreover, the identity IDj and the message Mj

corresponding to the j-th signature are parsed as κj,1, . . . , κj,z and mj,1, . . . ,mj,z, respectively.

As shown in Figure 8, techniques 2 and 3 allow to construct a batch verifier which requires only
two pairing evaluations for the schemes ChCh and Hess. Both ChCh and Hess schemes are proved
secure in the random oracle model. The ChCh batch verifier of Figure 8 was also shown in [24].
In [13] Camenisch et al. showed a batch verifier for an identity-based signature scheme secure in the
standard model. This scheme, which we refer to as Waters, was originally proposed by Waters [38],
although we’ll be using the optimizations to this scheme suggested in [30, 17].

4.4 Aggregate Signatures

Aggregate signatures were introduced by Boneh, Lynn and Shacham [8]. An aggregate signature
is a shorter representation of n signatures provided by different users on different messages. In
particular, consider n signatures σ1, . . . , σn on messages M1, . . . ,Mn issued by n users with public
keys pk1, . . . , pkn. An aggregate signature scheme provides an aggregation algorithm, which can
be run by anyone and outputs a compressed short signature σ on input all σi, for i = 1, . . . , n.
Moreover, there is a verification algorithm that on inputs the signature σ the public keys pk1, . . . , pkn
and the messages M1, . . . ,Mn decides if σ is a valid aggregate signature. Figure 4.4 reviews the
aggregate signatures we consider. Sh scheme [37] requires the existence of a third party named
aggregator who is responsible of aggregating signatures. LOSSW scheme [25], proved to be secure
in the standard model, is a sequential aggregate signature scheme. The aggregate signature must
be constructed sequentially, with each signer adding its signature in turn. Figure 10 shows the
corresponding batch verifier obtained by using our basic tools. Following the line of Theorem 4.1 it
is easy to see that the pairing based equations in Figure 10 are batch verifiers for the corresponding
schemes when all aggregate signatures are issued by the same set of users.
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Scheme
Setup
Key Generation

Aggregate Signature Verification

BGLS
Same as BLS
Same as BLS

Let σi be a BLS signature on message
Mi under private key pki
σ ←

∏`
i=1 σi

e(σ, g2) ?=
∏`
i=1 e(H(Mi), pki)

Sh

Same as BLS
For users and
aggregator, same
as BLS

Let σi be a BLS signature on message
Mi under private key pki
If all BLS signatures are valid, the
aggregator use its secret key skag to
compute
σ ← H(M1|| . . . ||M`)skag ·

∏`
i=1 σi

e(σ, g2) ?= e(H(M1,. . .,M`), pkag)·∏̀
i=1

e(H(Mi), pki)

LOSSW

(q, g1, g2,G1,G2,
GT , e)← PSetup(1τ )
α, y′

$← Zq
(y1, . . . , yk) $← Zkq
y = (y1, . . . , yk)
u′ ← gy

′

1

û′ ← gy
′

2

∀i = 1, . . . , k,
ui ← gyi1
ûi ← gyi2

u=(u1, . . . , uk,
û1, . . . , ûk)
A← e(g1, g2)α

sk ← (α, y′,y)
pk ← (A, u′, û′,u)

Let σ′=(
`−1∏
i

gαi1 ·
`−1∏
i=1

(u′i
k∏
t=1

u
mi,t
i,t )r

′
,

gr
′

1 ) = (S′1, S
′
2) be an aggregate so far

on a set of messages {M1, . . . ,M`−1}
under public keys {pk1, . . . , pk`−1}.
Let M` be the message to sign under
public key pk` and corresponding
secret key sk`.
We denote pki = (Ai, u′i, ûi

′, ui,1, . . . ,
ui,k, ˆui,1, . . . , ˆui,k), ski = (αi, y′i, yi,1,
. . . , yi,k) and Mi = mi,1, . . . ,mi,k

3.
w1 ← S′1 · gα1 · (S′2)(y

′
`+

Pk
t=1 y`,t·m`,t)

w2 ← S′2
r

$← Zq

S1←w1(u′`

k∏
t=1

u
m`,t
`,t )r

t∏
i=1

(u′i
k∏
t=1

u
mi,t
i,t )r

S2 ← w2 · gr1
σ = (S1, S2)

∏`
i=1Ai

?=

e(S1, g2)/e(S2,
∏̀
i=1

(ûi′
k∏
t=1

ûi,t
mi,t))

Figure 9: For setup, key generation and signature of BGLS and Sh see Figure 5. We denote by σ
an aggregate signature on a set of ` messages M1, . . . ,M`. In LOSSW a message Mi is processed
as a k-bit string denoted by mi,1, . . . ,mi,k.

5 Implementation and Performance Analysis

The previous work on batching short signatures [13] considers only asymptotic performance. Un-
fortunately, this “paper analysis” conceals many details that are revealed only through empirical
evaluation. Additionally, the existing work does not address how to handle invalid signatures.

We seek to answer these questions by conducting the first empirical investigation into the feasi-
bility of short signature batching. To conduct our experiments, we built concrete implementations
of seven signature schemes described in this work, including two public key signature schemes (BLS,
CHP), three Identity-Based Signature schemes (ChCh, Hess, Waters), a ring signature (CYH), and
a short group signature scheme (BBS). For each scheme, we measured the performance of the indi-
vidual verification algorithm against that of the corresponding batch verifier. We then turned our
attention to the problem of efficiently sorting out invalid signatures.

Experimental Setup. To evaluate our batch verifiers, we implemented each signature scheme
in C++ using the MIRACL library for elliptic curve operations [35]. Our timed experiments were
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Scheme Batch Verification Equation Techniques
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Let σj = (Sj,1, Sj,2) and pki = (Ai, u′i, ûi
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Figure 10: Let η be the number of signatures to verify. The vector (δ1, . . . , δη) in Zq is required
by the small exponents test. In LOSSW a message Mj,i provided by pki in the j’th aggregate is
processed as a k-bit string denoted by mj,i,1, . . . ,mj,i,k.

conducted on a 3.0Ghz Pentium D 930 with 4GB of RAM running Linux Kernel 2.6. All hashing
was implemented using SHA1,4 and small exponents were of size 80 bits. For each scheme, our
basic experiment followed the same outline: (1) generate a collection of η distinct signatures on
100-byte random message strings. (2) Conduct a timed verification of this collection using the
batch verifier. (3) Repeat steps (1, 2) four times, averaging to obtain a mean timing. To obtain
a view of batching efficiency on collections of increasing size, we conducted the preceding test for
values of η ranging from 1 to approximately 400 signatures in intervals of 20. Finally, to provide
a baseline, we separately measured the performance of the corresponding non-batched verification,
by verifying 1000 signatures and dividing to obtain the average verification time per signature. A
high-level summary of our results is presented in Figure 12.

Curve k R(G1) R(GT ) SRSA Pairing Time
MNT160 6 160 bits 960 bits 960 bits 23.3 ms
MNT192 6 192 bits 1152 bits 1152 bits 33.2 ms
SS512 2 512 bits 1024 bits 957 bits 16.7 ms

Figure 11: Description of the elliptic curve parameters used in our experiments. R(·) describes
the approximate number of bits to optimally represent a group element. SRSA is an estimate of
“RSA-equivalent” security derived via the approach of Page et al. [31].

Curve Parameters. The selection of elliptic curve parameters impacts both signature size and
verification time. The two most important choices are the size of the underlying finite field Fp, and
the curve’s embedding degree k. Due to the MOV attack, security is bounded by the size of the
associated finite field Fpk . Simultaneously, the representation of elements G1 requires approximately
|p| bits. Thus, most of the literature on short signatures recommends choosing a relatively small

4We selected SHA1 because the digest size closely matches the order of G1. One could use other hash functions
with a similar digest size, e.g., RIPEMD-160, or truncate the output of a hash function such as SHA-256 or Whirlpool.
Because the hashing time is negligible in our experiments, this should not greatly impact our results.
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Signature Size (bits) Individual Verification Batched Verification∗

Scheme MNT160 MNT192 SS512 MNT160 MNT192 SS512 MNT160 MNT192 SS512

Signatures
BLS (single signer) 160 192 512 47.6 ms 77.8 ms 52.3 ms 2.28 ms 2.93 ms 32.42 ms
CHP 160 192 512 73.6 ms 119.0 ms 93.0 ms 26.16 ms 34.66 ms 34.50 ms
BLS cert + CHP sig 1280 1536 1536 121.2 ms† 196.8 ms† 145.3 ms† 28.44 ms† 37.59 ms† 66.92 ms†

Identity-Based Signatures
ChCh 320 384 1024 49.1 ms 79.7 ms 73.3 ms 3.93 ms 5.24 ms 59.45 ms
Waters 480 576 1536 91.2 ms 138.64 ms 61.1 ms 9.44 ms 11.49 ms 59.32 ms
Hess 1120 1344 1536 49.1 ms 79.0 ms 73.1 ms 6.70 ms 8.72 ms 55.94 ms
Anonymous Signatures
BBS (modified per §4.1) 2400 2880 3008 139.0 ms 218.3 ms 193.0 ms 24.80 ms 34.18 ms 198.03 ms
CYH, 2-member ring 480 576 1536 52.0 ms 77.0 ms 113.0 ms 6.03 ms 8.30 ms 105.69 ms
CYH, 20-member ring 3360 4032 10752 86.5 ms 126.8 ms 829.3 ms 43.93 ms 61.47 ms 932.66 ms
∗Average time per verification when batching 200 signatures.
†Values were derived by manually combining data from BLS and CHP tests.

Figure 12: Summary of experimental results. Timing results indicate verification time per signature.
With the exception of BLS, our experiments considered signatures generated by distinct signers.

p, and a curve with a high value of k. (For example, an MNT curve with |p| = 192 bits and k = 6
is thought to offer approximately the same level of security as 1152-bit RSA [31].) The literature
on short signatures focuses mainly on signature size rather than verification time, so it is easy
to miss the fact that using such high-degree curves substantially increases the cost of a pairing
operation, and thus verification time. To incorporate these effects into our results, we implemented
our schemes using two high-degree (k = 6) MNT curves with |p| equal to 160 bits and 192 bits. For
completeness, we also considered a |p|=512 bit supersingular curve with embeddeing degree k = 2,
and a subgroup G1 of size 2160. Figure 11 details the curve choices along with relevant details such
as pairing time and “RSA-equivalent” security determined using the approach of Page et al. [31].

5.1 Performance Results

Public-Key signatures. Figure 13 presents the results of our timing experiments for the public-
key BLS and CHP verifiers. Because the BLS signature does not batch efficiently for messages
created by distinct signers, we studied the combination suggested in [13], where BLS is used for
certificates which are created by a single master authority, and CHP is used to sign the actual
messages under users’ individual signing keys. Unfortunately, the CHP batch verifier appears to be
quite costly in the recommended MNT curve setting. This outcome stems from the requirement
that user public keys be in the G2 subgroup. This necessitates expensive point operations in the
curve defined over the extension field, which undoes some of the advantage gained by batching.
However, batching still reduces the per-signature verification cost to as little as 1/3 to 1/4 that of
individual verification.

Identity-Based signatures. Figure 14 gives our measurements for three IBS schemes: ChCh,
Waters and Hess. (For comparison, we also present CHP signatures with BLS-signed public-key
certificates.) In all experiments, we consider signatures generated by different signers. In contrast
with regular signatures, the IBSes batch quite efficiently, at least when implemented in MNT curves.
The Waters scheme offers strong performance for a scheme not dependent on random oracles.5 In
our implementation of Waters, we first apply a SHA1 to the message, and use the Waters hash
parameter z = 5 which divides the resulting 160-bit digest into blocks of 32 bits (as in [30]).

5However, it should be noted that Waters has a somewhat loose security reduction, and may therefore require
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Figure 13: Public-Key Signature Schemes. Per-signature times were computed by dividing total
batch verification time by the number of signatures verified. Note that in the BLS case, all signatures
are formulated by the same signer (as for certificate generation), while for CHP each signature was
produced by a different signer. Individual verification times are included for comparison.

Anonymous signatures. Figure 15 gives our results for two privacy-preserving signatures: the
CYH ring signature and the modified BBS group signature. As is common with ring signatures,
in CYH both the signature size and verification time grow linearly with the number of members
in the ring. For our experiments we arbitrarily selected two cases: (1) where all signatures are
formed under a 2-member ring (useful for applications such as lightweight email signing [1]), and
(2) where all signatures are formed using a 20-member ring.6 In contrast, both the signature
size and verification time of the BBS group signature are independent of the size of the group.
This makes group signatures like BBS significantly more practical for applications such as vehicle
communication networks, where the number of signers might be quite large.

5.2 Batch Verification and Invalid Signatures

In Section 3.3, we discuss techniques for dealing with invalid signatures. When batch verification
fails, this divide-and-conquer approach recursively applies the batch verifier to individual halves of
the batch, until all invalid invalid signatures have been located. To save time when recursing, we
compute products of the form

∏η
i=1 x

δi
i so that partial products will be in place for each subset on

which me might recurse. We accomplish this by placing each xδii at the leaf of a binary tree and
caching intermediate products at each level. This requires no additional computation, and total
storage of approximately 2η group elements for each product to be computed.

To evaluate the feasibility of this technique, we used it to implement a “resilient” batch verifier
for the BLS signature scheme. This verifier accepts as input a collection of signatures where some

larger parameters in order to achieve security comparable to alternative schemes.
6Although the CYH batch verifier can easily batch signatures formed over differently-sized rings, our experiments

use a constant ring size. Our results are representative of any signature collection where the mean ring size is 20.
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Figure 14: Identity-Based Signature Schemes. Times represent total batch verification time divided
by the number of signatures verified. “CHP+BLS cert” represents the batched public-key alternative
using certificates, and is included for comparison.
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Figure 15: Anonymous Signature Schemes. Times represent total batch verification time divided
by the number of signatures verified. For the CYH ring signature, we consider two distinct signa-
ture collections, one consisting of 2-member rings, and another with 20-member rings. The BBS
signature verification is independent of the group size.

may be invalid, and outputs the index of each invalid signature found. To evaluate batching
performance, we first generated a collection of 1024 valid signatures, and then randomly corrupted
an r-fraction by replacing them with random group elements. We repeated this experiment for
values of r ranging from 0 to 15% of the collection, collecting multiple timings at each point, and
averaging to obtain a mean verification time. The results are presented in Figure 16.

Batched verification of BLS signatures is preferable to the näıve individual verification algorithm
even as the number of invalid signatures exceeds 10% of the total batch size. The random distribu-
tion of invalid signatures within the collection is nearly the worst-case for resilient verification. In
practice, invalid signatures might be grouped together within the batch (e.g., if corruption is due
to a burst of EM interference). In this case, the verifier might achieve better results by omitting
the random shuffle step or using another re-ordering technique.

6 Conclusion

Our experiments provide strong evidence that batching short signatures is practical, even in a setting
where an adversary can inject invalid signatures. Our results apply to standard and Identity-Based
signatures, as well as to the more exotic short ring and group signatures which are increasingly
being considered for privacy-critical applications. At a deeper level, our results indicate that ef-
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Figure 16: BLS batch verification in the presence of invalid signatures (160-bit MNT curve). A
“resilient” BLS batch verifier was applied to a collection of 1024 purported BLS signatures, where
some percentage were randomly corrupted. Per-signature times were computed by dividing the total
verification time (including identification of invalid signatures) by the total number of signatures
(1024), and averaging over multiple experimental runs.

ficient batching depends heavily on the underlying design of a signature scheme, particularly on
the placement of elements within the elliptic curve subgroups. For example, the CHP signature
and the ChCh IBS have comparable size and security, yet the latter scheme can batch more than
250 signatures per second (each from a different signer), while our CHP implementation clocks in
at fewer than 40. We believe that scheme designers should take these considerations into account
when proposing new pairing-based signature schemes.
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A Proof of the Small Exponents Test

Proof. It is easy to see that if A = Y (j) holds for all j ∈ [1, η], then
∏η
j=1A

δj =
∏η
j=1 Y

(j)δj holds for
any random vector ∆ = (δ1, . . . , δη). We must now show the other direction, that if Batch outputs
accept, then A = Y (j) holds for all j ∈ [1, η] except with probability at most 2−`b . Since A and
Y (j) are in GT , we can write A = e(g, g)a and Y (j) = e(g, g)y

(j)
for some a, y(j) ∈ Zq. The batch

verification equation can then be written as
∏η
j=1 e(g, g)a =

∏η
j=1 e(g, g)y

(j) ⇒ e(g, g)
Pη
j=1 a =

e(g, g)
Pη
j=1 y

(j)

. Now define βj = a− y(j). Since Batch accepts it must be true that

η∑
j=1

βjδj ≡ 0 (mod q) (4)

Now assume that at least one of the individual equations do not hold. We assume without loss
of generality that this is true for equation j = 1. This means that β1 6= 0. Since q is a prime then
β1 has an inverse γ1 such that β1γ1 ≡ 1 (mod q). This and Equation 4 gives us

δ1 ≡ −γ1

η∑
j=2

δjβj (mod q) (5)

Let event E occurs if A 6= Y (1), but Batch accepts. Note that we do not make any assumptions
about the remaining values. Let ∆′ = δ2, . . . , δη denote the last η − 1 values of ∆ and let |∆′| be
the number of possible values for this vector. Equation 5 says that given a fixed vector ∆′ there
is exactly one value of δ1 that will make event E happen, or in other words that the probability
of E given a randomly chosen δ1 is Pr[E|∆′] = 2−`b . So if we pick δ1 at random and sum over
all possible choices of ∆′ we get Pr[E] ≤

∑|∆′|
i=1 (Pr[E|∆′] · Pr[∆′]). Plugging in the values, we get:

Pr[E] ≤
∑2`b(η−1)

i=1

(
2−`b · 2−`b(η−1)

)
= 2−`b . 2
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