
Authentication and Privacy with
Application to Pervasive Computing

Michael Østergaard Pedersen

PhD Dissertation

Department of Computer Science
University of Aarhus

Denmark

Authentication and Privacy with Application
to Pervasive Computing

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Michael Østergaard Pedersen

30th May 2008

Abstract

Knowing who you are interacting with, i.e. authenticating their identity, is
crucial to achieve security in almost all scenarios, since authentication is the
basis for authorization, access control, non-repudiation, and auditing. However,
technologies used for identification and authentication are often plagued by
privacy problems, since they by their nature, often leave digital traces behind,
that allows one to uniquely identity a user across different domains, or link a
user’s identity to his actions. Fortunately there do exist technologies that can
give us the best of both worlds: Privacy, while still being able to authenticate
the credentials needed for a given task.

In this thesis we examine how authentication can be applied to different
scenarios in the pervasive computing domain, where each scenario have their
own specific requirements such as privacy, usability, efficiency, or a combina-
tion. More specifically: 1) We examine the issue of privacy and authentication
related to RFID tags, and show that some tradeoffs between privacy and effi-
ciency are unavoidable. 2) We propose an authentication scheme that allows
users to remain anonymous, as long as they do not try to cheat the system by
giving away their credentials. 3) We consider the importance of usability to
authentication, by 3a) designing a user friendly login system, supporting work
in a hospital environment, and 3b) designing and implementing an anti-theft
policy for pervasive computing devices where the key property is to authenticate
the user towards a system of devices in his own home. 4) Short signatures are
important in many applications, especially in the pervasive computing realm,
but unfortunately most short signatures are slow to verify. We propose batch
verifiers for a number of signature schemes, we propose a new signature scheme
with very short signatures, for which batch verification for many signers is also
highly efficient, and finally we implement some of the schemes and provide an
in depth performance analysis.

v

Acknowledgements

First of all I want to thank my supervisor Ivan Damg̊ard for his help and support
as well as his enthusiasm and many valuable contributions to this work. I am
also grateful to Jakob Illeborg Pagter and Klaus Marius Hansen for giving me
the opportunity to do my PhD here, as part of the eu-DOMAIN project.

I thank all my co-authors Jakob Bardram, Jan Camenisch, Ivan Damg̊ard,
Kasper Dupont, Matthew Green, Anna Lisa Ferrara, Susan Hohenberger, Rasmus
Kjær, Jakob Illeborg Pagter and Torben Pedersen for their help and many in-
spiring discussions. Also thanks to Serge Fehr and Anna Lysyanskaya for taking
time out of their busy schedule to review this thesis.

A special thanks to Jan Camenisch for hosting me during my abroad stay
at IBM Research in Zürich. It was a very nice and memorable experience. I
also thank all the people I met there, especially Susan Hohenberger for great
conversations of both scientific, and not so scientific, nature.

Studying here at the University of Aarhus has been a great experience,
caused by both the excellent environment for cryptographic research, that mem-
bers of the cryptology group provides, but also because of all the friends that
have crossed my path over the many years I have been here. Unfortunately
there are too many to mention all of them, but rest assured that I have not
forgotten any of you. Thank you all for having a great time here with me.

It is always a pleasure to work in an environment where everything just
seems to work. Of course we all know that nothing just works by itself, so I
would like to thank the people who makes it seem like it does: The current and
former secretaries Dorthe, Ellen, Hanne, Karen and Lene, the technical staff
who make everything from the computers to the coffee machines work, and the
cleaning personnel who have been making my office a nice place to return to
every morning.

Last, but not least, I want to express my gratitude to my family for their
love and support, and for bearing with me during those periods when work took
a very big part of my time.

Michael Østergaard Pedersen,
Århus, 30th May 2008.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Pervasive Computing . 2

1.2 Privacy . 5

1.2.1 Related to Pervasive Computing 6

1.3 Authentication . 8

1.4 Outline . 11

2 Preliminaries 13

2.1 Pairings . 13

2.2 Complexity Assumptions . 15

2.3 Zero-Knowledge Proofs and Proofs of Knowledge 15

2.4 Commitment Schemes . 18

2.5 Digital Signatures . 20

2.6 Random Functions . 22

3 RFID Privacy and Authentication 23

3.1 Introduction . 23

3.2 Tradeoffs between Privacy and Efficiency 27

3.2.1 Model and Definition . 29

3.2.2 Independent Keys . 32

3.2.3 Correlated Keys . 34

3.2.4 Efficiency . 39

4 Anonymous Authentication 41

4.1 Introduction . 41

4.2 Unclonable Group Identification 44

4.2.1 Definition . 46

4.2.2 A Practical Solution . 49

4.2.3 On Concurrent Security 55

4.2.4 On Membership Revocation and Framing 56

4.2.5 A More Efficient Solution 56

ix

5 Usability and Authentication 59
5.1 Introduction . 59
5.2 Context-Aware User Authentication 63

5.2.1 Our Design . 65
5.2.2 Security Analysis . 69
5.2.3 Implementation . 71

5.3 The All-Or-Nothing Anti-Theft Policy 73
5.3.1 Resurrecting Duckling . 73
5.3.2 Basic Principle . 74
5.3.3 The All-Or-Nothing Security Policy 75
5.3.4 With Symmetric Keys . 76
5.3.5 With Public Keys . 82
5.3.6 Applications . 87

6 Batch Verification of Signatures 91
6.1 Introduction . 91

6.1.1 History . 93
6.1.2 Techniques by Bellare, Garay and Rabin 94

6.2 Batch Verification of Short Signatures 94
6.2.1 Efficiency of Prior Work and our Contributions 95
6.2.2 Definitions . 97
6.2.3 Batch Verification without Random Oracles 100
6.2.4 Faster Batch Verification with Restrictions 104

6.3 Practical Short Signature Batch Verification 109
6.3.1 A Framework for Pairing-Based Batch Verification 110
6.3.2 Applying the Framework to Signature Schemes 113
6.3.3 Implementation and Performance Analysis 123

Bibliography 131

x

Chapter 1

Introduction

Knowing who you are interacting with, i.e. authenticating their identity, is
crucial to achieve security in almost all scenarios, since authentication is the
basis for authorization, access control, non-repudiation, and auditing.

Traditional authentication of a human towards a computer system, has been
done by first identifying the user with a username, and then authenticating
him by his password. However, that approach does not always work when we
consider authentication in a broader sense. In a world where computers are
everywhere, and in every form imaginable, we face challenges of authenticat-
ing not just a user using a traditional personal computer, but users towards
various sorts of computing devices, devices towards each other, the origin of
messages, etc. Clearly in most of these cases, tradition username and password
authentication is not applicable.

Probably no one will argue against the claim, that technology is playing
a bigger and bigger role in our daily lives. We no longer have the option of
choosing not to use technology, and that puts additional requirements on all
technology we interact with, especially the one used for authentication. It must
be easy to use by anyone, yet still remain secure so we can trust it to protect
our most sensitive data. It must also be applied in a way that is consistent with
what we expect from it, meaning that the use of technology should not have
unexpected (negative) consequences for us as users.

Especially technologies used for identification and authentication are often
plagued by privacy problems. The purpose of these technologies are by their
nature to verify whether or not a user with a specific credential is present, but
if we don’t control who gets access to that information, or how that information
is used, we create privacy problems for the users of the very same technology.
Fortunately there do exist technologies that can give us the best of both worlds:
Privacy, while still being able to authenticate the credentials needed for a given
task.

In this thesis we examine how authentication can be applied to different
scenarios in the pervasive computing domain, where each scenario have their
own specific requirements such as privacy, usability, efficiency, or a combination.

The rest of this chapter is an introduction to the areas we touch in this
thesis. Most of the results are motivated by application to the area of pervasive
computing, so we start by giving an introduction to pervasive computing in

1

2 Chapter 1. Introduction

Section 1.1. Following that, we examine privacy in Section 1.2. We start by
giving an introduction to what privacy is and why we should care about it,
and then we shall examine at how privacy violations occur. This will be useful
in especially Chapter 3 and 4, where we apply our techniques to solve privacy
problems in the real world. Then we relate privacy to the area of pervasive
computing. In Section 1.3 we introduce the concept of authentication, and
relates it to related work in that area. Finally we give an outline of the rest of
this thesis in Section 1.4.

1.1 Pervasive Computing

The term pervasive computing covers the vision of computers everywhere, and
is characterized by computers being spread throughout the environment, and
yet gracefully integrated with it. The effect of this, is that users, devices,
and services will be more mobile, information appliances are available when we
need them, and communication is made easier between individuals, between
individuals and devices, and between devices themselves.

To get a better feeling for the way pervasive computing will change our daily
lives in the future, consider the following list of pervasive computing technolo-
gies, taken from the report Things that Think [145]:

Interactive Spaces In addition to consumer electronics in private homes,
which we already have a lot of, this includes things such as swivel chairs in
offices that remember height settings for each individual, intelligent fridges
that know whether or not the milk is too old, and under-floor heating that
is automatically turned on when the forecast is for cold weather.

Clothes Jackets with built-in music players, sports clothing with built-in heart
rate monitors, and glasses with built-in computer monitors. Other ex-
amples could be intelligent work clothes for groups such as firemen.

Healthcare Intelligent bandages that can report how the injury is doing, video
conferences with doctors, so patients can be treated at home, doors that
open automatically, so the rescue services can enter the home of a patient
with insulin shock and much more.

Retail, Trade and Production There are a large number of examples in the
retail trade, such as shoplifting prevention systems that work by the
product triggering an alarm when it leaves the shop, automatic stock-
taking, and checkouts without cashiers, where the shopping trolley is
pushed through a scanner that registers the products. Researchers are
also working on ideas for using these technologies to provide warnings to
people with allergies when they pick up certain food, for food safety, for
sorting waste, and much more.

Cars Computer-controlled brakes, movies, and games for passengers, and the
use of GPS navigation are examples of pervasive computing technologies
that are already widespread today. Solutions offering automatic alarms in

1.1. Pervasive Computing 3

places where the road is slippery by means of communication with other
cars, and other traffic safety initiatives are also underway.

IT In this sector pervasive computing offers new solutions such as public print-
ers that can be used via mobile phones, and the automatic storing of
personal data such as digital photos. The use of electronic chips in pass-
ports is another example.

Military Last, there are a number of military applications such as unmanned
planes, tanks, operating rooms, weapons that can only be fired by the
rightful owner, etc.

All these applications are based on units with built-in computers and com-
munication capabilities, of which we have probably only seen the tip of the
iceberg. Pervasive computing typically involves units with limited resources in
terms of computational power, memory, bandwidth, and battery, but this does
not necessarily have to be true.

Pervasive computing covers both current and future technologies, so in order
to separate issues today from the possibly different issues of tomorrow, we have
divided different use of the technology into three different categories. These
definitions are inspired by Forrester’s definitions of The Executable Internet:
Intelligent applications that execute code near the user to create rich, engaging
conversation via the net and The Extended Internet: Internet devices and
applications that sense, analyze, and control the real world. Our definitions,
as they appear in our report to the former Danish National Council of IT
security [160], are the following (in order of increasing technological complexity):

ID-in-everything. This level is already used commercially, and is charac-
terized by the use of passive units, by which we mean that the units can only
report their identity, and possibly raw sensor input. All calculations that do
not have anything to do with the reporting of the identity are placed in the in-
frastructure that the unit is communicating with. The most prominent member
of this category is the RFID tag.

RFID tags are small wireless devices that react to an electromagnetic field
generated by an RFID reader. When they enter the electromagnetic field it
induces an electric current in the tag, which can then emit some prestored
information or perform some computation. The computing power one can as-
sume an RFID tag to have, however, is severely limited in many applications
by requirements for extremely low cost tags. Today, RFID is primarily used
in the supply chain. By putting an RFID tag on a product, or, for example,
a pallet with products, one can easily monitor and control the logistics from
the manufacturer to the shop. However, as useful as this is to these parties,
the possibility of uniquely identifying objects that will eventually be sold to
customers, has raised a lot of privacy concerns.

Besides the supply chain RFID can be used in many other places. In the
amusement park Legoland, kids can be given a wristband with an RFID tags,
which parents can use to track the whereabouts of their child, and in most ski
resorts, guest are given an RFID tag which gives them access to the ski lift.

4 Chapter 1. Introduction

The Mexican legal system offers a more exotic example, where employees in the
Mexican Public Prosecutor’s office have had an RFID chip implanted under the
skin to identify them when accessing legal documents. A similar technology is
used in some night clubs where certain VIP guests are identified by an RFID
tag under their skin, which they use to gain fast access to the club, as well as
to pay for their drinks.

So far we have only mentioned RFID tags, since they are the prime repres-
entative of this category. However, many other technologies share a common
property with RFID tags, such as mobile phones and laptop computers: They
are uniquely identifiable and tie a physical object to a virtual identity.

Services-in-everything. This category is what Forrester call the The Ex-
ecutable Internet, and is characterized by the use of more active units that
can perform calculations and influence their surroundings. These units are not
just identifiable, they are also fitted with sensors, actuators, and applications
whereby they are able to offer various forms of services. Basically, we can say
that in this category, technology assist the user in his actions. This technology
is already partly realized, for example via PDAs, digital cameras and other
things that can communicate, and that are thereby on the Internet in one form
or another. They are not limited to just reporting an identity, but can connect
to other units, and back-end systems, to offer more complex services.

Agents-in-everything. This category is called The Extended Internet by
Forrester, and is characterized by units that are not only active, but also
autonomous, i.e. they send data and influence their surroundings on their own
initiative. Examples of this could be software agents that look for your favorite
wine, and automatically order and pay for it (after having asked the bottle dir-
ectly about its temperature throughout its lifetime), or it could be a software
agent who informs another person about the nearest pharmacy where he can
get that specific kind of medicine he needs, which your agent knows since you
use the same kind of medicine.

The difference from the services-in-everything category, lies in the scope,
and in the fundamental difference that a great deal of the responsibility for
decisions is handed over to technology. The transfer of responsibility consists
of a great number of decisions being made by so-called agents. This includes
simple tasks such as the answering of telephone calls and calendar functions,
but also financial transactions and concerns about supplying personal data are
handled automatically. Another fundamental difference from the other two
categories, are that we can no longer restrict ourselves to communicating with
units that are connected to a local system. We will have to deal with foreign
systems and devices all the time.

Technologies in this category are not yet available, but scenarios describing
the expected use of such technologies, have been written by a think tank under
the European Union [87].

1.2. Privacy 5

1.2 Privacy

In this section, we establish some concepts, which can be used to relate the
systems and solutions we later propose, to the real world. Solutions to privacy
problems are not discussed in this section. We will also talk about how privacy
problems manifest themselves in pervasive computing, but before we can do
that, we take a brief look at what privacy is, why people care about it, and why
we should be concerned about protecting it.

The Merriam-Webster dictionary defines privacy as the quality or state of
being apart from company or observation and freedom from unauthorized in-
trusion. According to Altman [2], privacy is the result of different processes
that continuously work in an area around each individual, which he refers to
as the self-environment boundary. More specifically, Altman defines privacy as
a self-environment boundary regulation process based on dynamic, social, dia-
lectic normalization of desired privacy to attained levels. But which processes
and why? Gavinson uses the term control to describe privacy and divides pri-
vacy into three basic elements as seen below [97]. Boyle claims that we regulate
the self-environment boundary using exactly these three genres of control [44].

Solitude Control over ones interpersonal interactions with other people. This
is something we as humans often handle automatically, by regulating
which stimuli are sensed from our surroundings.

Confidentiality Control over other peoples access to ones information. More
specifically it is about the fidelity of which information is accessed by oth-
ers. Fidelity is the subjective perceived understanding of the correctness
and detail of the information captured, so it is more about the level of
details you give away, than it is about giving it all away or keeping it all
secret.

Autonomy Autonomy is not control over our behavior, since our behavior is
part of what defines us as individuals and hence some parts of it, is outside
of our control. Instead autonomy is control over the observable manifest-
ation of our identity. It combines factors such as behavior, appearance,
impression, and self-definition. It could also be referred to as freedom of
will

These controls are primarily exerted through individual and social human
behavior, but could for example also be exerted through law or technology. They
work concurrently and can have a strengthening or weakening implication on
each other – for example, being able to do whatever you like can influence the
solitude of other people. Choosing to spend a lot of time with other people
will likely increase the amount of information you give away about yourself and
hence decrease the confidentiality of your personal information. The keyword
here is choice. The self-environment boundary is regulated through control, but
without choice we have no control. In order to have control over our confid-
entiality we must be able to disclose information as well as keeping it secret.

6 Chapter 1. Introduction

In order to control solitude we must have the choice between staying alone or
interacting with other people.

But why is privacy even important? Why don’t we just say that if we have
nothing to hide, we don’t care what other people know about us. That topic
in itself is worthy of a lengthy report, and several books and articles have been
written about it (e.g. [170]). Here we will just sketch a very brief overview.

When people use the argument if you are not doing anything wrong, you
have nothing to hide they are thinking of privacy only as confidentiality of some
observable facts about a person, but that is missing the point, since privacy
is much more than that. The most common answers one might come up with
in response to the question above could be if I’m not doing anything wrong,
then you have no reason to watch me or because you might do something wrong
with my information. While these answers are certainly valid (especially the
latter), and while there is certainly good reason to watch the watchers, they
miss an important point in that they focus only on privacy as keeping personal
information private. Rössler states in her book The Value of Privacy that No
matter if you do something wrong or illegal – just the fact that you feel watched
or know you are being watched has an impact on the way you behave [170].
Going back to the genres of control, being forced in this way to alter your
behavior, the way you interact with other people, etc. restricts your control over
your solitude and autonomy, and being watched takes away your control over
personal information about you, which affects your confidentiality. Altman says
the following about privacy: At the psychological level, privacy supports social
interaction which, in turn, provides feedback on our competence to deal with the
world which, in turn, affects our self-definition. In other words, privacy affects
who we are and how we define ourselves. That explains why many people do
not like being under surveillance, even though they cannot explain exactly why.

The above does not say much about how privacy violations occur, and thus
does not help us design technologies to protect privacy. We will touch this
area in the next section, but for a more detailed classification, we refer to the
model by Lederer, Mankoff and Dey [135]. This model provides some tools for
analyzing conditions for privacy implications of a given phenomenon, by looking
at topics such as how does a privacy violation occur, what is disclosed and why
is it disclosed.

1.2.1 Related to Pervasive Computing

We now get to the issue of how privacy violations occur in some pervasive
computing applications, by starting with the most prominent technology in the
ID-in-everything category, namely the RFID tag. Systems using RFID tags use
them to map physical objects to virtual identities, by assigning each object an
identity code, and a database then keeps track of which identity codes belong
to which objects. Since RFID tags only have a very limited range (a few meters
at most) when an RFID reader sees an identity code, it can conclude that
the object with that code is close to the reader. This can then be used for
providing access control, looking up the price of some goods, turning on the
light, giving the washing machine instructions on how to wash that particular

1.2. Privacy 7

piece of clothing that the tag is attached to, or whatever one wants to do
in response to the proximity of a specific physical object. In addition to a
database with the mapping of identity codes to physical objects, it is of course
also possible to build up a database of the observations registered about a
specific code. On the basis of this, there are three types of threats to privacy
in RFID scenarios: Reading of identity codes, the misuse of existing databases
with registered codes, and finally a combination of the two.

As identity codes are sent over the air, it is easy to intercept them without
being noticed. This threat is basically more serious the greater the distance
from which identities can be intercepted.

The ability to read an identity code from an RFID tag, discloses nothing
about the physical object associated with this identifier, unless you have access
to the database that associates the code with the object and/or user (it still
poses some security risks if the tag is used for authentication). However, it does
allow tracking of an anonymous user’s movements around in the public space,
such as a shopping center or on the street. Note that the possibility of carrying
out surveillance is neither new nor particular to pervasive computing. It has
been possible for many years with video surveillance for example, but with ID-
in-everything it will be very easy and inexpensive to automate the collection
and processing of these data. Of course such tracking of unknown identity codes
is only useful if a database is kept up to date with codes and the context in
which they are read.

This leads us on to the next threat, which is the misuse of databases con-
taining identity codes that can be traced to a particular person, by linking
different pieces of information together. Such analysis is already commonplace
for detecting credit card fraud, and identifying consumption patterns, and in
the same way it is easy to imagine the value of analysis of consumption pat-
terns on the basis of information from the use of RFID in the retail sector.
In connection with misuse of databases, it is important to understand that an
attacker must have access to the database, and will therefore often be an in-
sider. The threat to privacy in connection with tracking therefore comes, to
a great extent, from the organizations and their employees who control these
databases. In comparison with the more direct and tangible threat of privacy
by reading what people on the street have in their shopping bags, this threat is
less obvious, because it is based on an analysis of a quantity of data that has
been collected, where each individual case of scanning can appear innocent.

The last threat is the combination of scanning of identity codes and the
(mis)use of databases. A product with an RFID tag bought in one shop will
also be able to be read in the shopping bag by another shop that also uses RFID.
The difference here is that as well as being able to follow a certain identity code,
there is also access to the database that links this code to more interesting data.
Depending on what data material is available, the second shop will have an idea
of what products the consumer might be interested in, and possibly who we are,
or even what we have previously bought in various shops. This type of attack
on privacy will generally be more complex than attacks that merely analyze
a single database, both because they require access to the relevant databases
and because the attack most likely will involve several organizations that are

8 Chapter 1. Introduction

working together.

Everything said so far in this section is related to RFID tags, but many other
technologies pose similar privacy threats. The hardware address of the wireless
network card in laptops and PDAs, Bluetooth, GSM, etc. are all examples of
technologies with a unique identity code that can be read over the air and
(ab)used just as the code sent by an RFID tag. The key element in the ID-in-
everything category is that units can be identified, i.e. a depiction of physical
objects – whether it will be objects or people, or objects that represent or
that are associated with people, such as a train ticket – in the virtual space.
It is however worth pointing out that in all cases except for RFID, the unique
identifier is usually a byproduct, meaning that the technology doesn’t exist with
the purpose of broadcasting a unique identifier, but it does so because of the
inner workings of the technology. For example the Bluetooth ID is necessary for
addressing devices, but can also be used to uniquely identify a device without
the knowledge of the device owner. A GSM telephone transmits a unique IMEI
number that can be read at a distance of several kilometers, a laptop computer
that is set up for wireless communication sends out a unique address, etc.

As with ID-in-everything, the identification of units is a very important
element in services-in-everything as well. However, units do not just have to
send an identity code to a reader, they are able to perform computation and thus
might leak more information than just their identity. Take for example a credit
card. When using it to pay for some goods it not only gives the store the credit
card number, but ties your identity to the card, and hence the transaction. The
store can keep records of what you bought and how much money you spent, the
bank knows where and when you shopped and how much you spent there, etc.
Another example is systems used for authentication, where the purpose is just to
prove that the user is allowed to access a resource. However, the protocol used
for this, might leak information that allows a third party to uniquely identity
that particular user. The good news is that if the system is designed properly,
we have a lot more control in this category. We can design protocols that do
not leak personal information, we can keep personal data on the device instead
of sending it off to third parties, etc.

Compared to the previous two categories in the agents-in-everything cat-
egory, we have intelligent agents interacting with many foreign systems they
have never interacted with before, and with whom the user is not at all fa-
miliar. Furthermore, the agents will often decide on behalf of the user which
personal information to disclose. Since scenarios in this area are still futuristic,
we are not going to spend time on how to deal with privacy issues here, as it
is still unclear how exactly things are going to work. We note however, that
unless people designing these systems in the future are very careful, there will
be a whole new wave of privacy violations.

1.3 Authentication

A credential is an attestation of qualification, competence, or authority, issued
to some subject. Credentials can be anything from simple identifiers such as

1.3. Authentication 9

your name, birthday, biological traits, etc., to statements such as being allowed
to access a specific resource. However, before a credential can be accepted, it
must be verified. Stating a claim such as your name is known as identification,
whereas verification of that claim is known as authentication. In this section we
introduce two fundamentally different techniques for authentication, and briefly
survey some of the concepts we will return to later in this thesis.

Symmetric key authentication. Probably the most well known form of
authentication to most people, is the username/password combination. Users
log on to systems by first identifying themselves with a username, and then
authenticate themselves by typing in the password associated with that user-
name. The system then checks if the password matches the one stored for that
user (preferably hashed in some way, e.g. by using PKCS#5 [126]), and if it
does, then the user is granted access. At first sight this seems fine, but there
are a number of problems with this approach. First of all, if authentication
is done over a network, everyone monitoring the traffic can see the password.
Second, the user reveals his secret to the system, but since the system is not
authenticated towards the user, he has no way of knowing if he is indeed talking
to the system he thinks he is, or if he is revealing his password to a malicious
system. A better method would be to execute a zero-knowledge proof between
the user and the server, demonstrating that the user does indeed have the right
password, without revealing it to anyone [104]. Often we are interested in more
than just authenticating the user’s identity. We also want to exchange some
cryptographic key material, which can later be used to protect the communica-
tion channel between the user and the server. Many protocols have solved this
problem, with varying security guarantees. The most important property is of
course that the password stays private, but also that monitoring the commu-
nication channel between the user and the server, does not allow an adversary
to mount an off-line brute force attack, trying to guess the password. The only
way to try to guess the right password, should be to query the server once
for each guess, since the server can then quickly determine if an attack is in
progress, and deny further attempts. The latest example of such a protocol is
by Canetti, Halevi, Katz, Lindell, and MacKenzie [62] which is provably secure
under Canetti’s Universal Composability framework. Then of course there is
the whole issue whether or not passwords are secure enough to be used for
authentication. Many users have a tendency to pick trivial and easy to guess
passwords.

Many authentications do not take place between a user and a system, but
between entities in a system itself, so let us take another example; RFID tags.
The first problem is that standard RFID tags do not perform any kind of
authentication, only identification. They send out their credential, which is just
an identity code, but it is not possible to authenticate the tag. The identity
code could have been seen by anyone, and now being retransmitted. That causes
two problems. As we have discussed, sending out a unique identity code is bad
from a privacy point of view, but it also makes standard RFID tags unsuitable
for authenticating people or objects they are attached to. An obvious solution

10 Chapter 1. Introduction

would be to equip the tag with a symmetric key shared with the reader, and then
use an authentication protocol between the tag and the reader, similar to what
we have just seen between a user and a system. However, one must know exactly
what the purpose of the authentication is. Assuming that the authentication
protocol is secure, the only thing authenticated would be, that the tag is out
there somewhere. It does not have to mean that the tag is close to the reader,
since there could be a device close to the reader, communicating with a device
close to the tag, relaying messages between the tag and the reader. Such an
attack is called the proxy attack, or the mafia fraud attack, and can be quite
serious when systems rely on transmission range to authenticate the presence
of some device, e.g. for controlling access to a building. The only known way to
protect against such an attack, is to use so-called distance bounding protocols
that measures the time it takes for the tag to respond, and can detent if the
response is coming from a device close to the reader, or from far away [47].

From a privacy point of view there are also some serious issues with the
protocols we have described so far. In the first example, the user will always
send his username before the protocol starts, and in the RFID case, the tag
just sends out an identity code to any reader nearby.

Using public key cryptography this problem is easily solved. Simply let the
tag encrypt its identity under the public key of the reader, before broadcasting
it1. The reader could then decrypt the message, and learn the identity of the
tag. However, as we have mentioned, RFID tags are small devices incapable
of performing public key cryptography. This privacy problem started a fairly
intensive research in private authentication protocols, based on symmetric key
techniques. One of the first proposed solutions for RFID tags were the so-called
hash locks by Weis, Sarma, Rivest, and Engels [190], but many followed [14,15,
124, 146, 153, 154, 185]. However, it was unclear what kind of adversaries these
protocols were supposed to protect against. In 2005 Avoine classified a range of
adversarial capabilities [13] and soon after Juels and Weis described a single, but
very powerful, adversary, with a simple definition called strong privacy [125].
Burmester, Le, and Medeiros [51] have also proposed a security definition based
on Canetti’s Universal Composability framework. We will return to the issue of
private RFID authentication in Chapter 3, but note that these techniques are
not only for RFID tags, but can be used in general for private authentication
based on symmetric keys.

Public key authentication. The use of symmetric keys is somewhat lim-
ited, due to the fact that the both parties must agree on cryptographic keys
in advance. Except for the problems of distributing the keys, this also does
not permit properties such as non-repudiation. However, if we turn to authen-
tication based on public key techniques, we can solve many other interesting
security problems related to authentication.

These techniques are centered around digital signatures. A digital signature
scheme can be used to sign messages, such as documents or login requests, or a

1This of course assumes that it is not possible to determine if two ciphertexts are the
encryption of the same value

1.4. Outline 11

trusted third party can issue credentials, by signing certain statements about an
entity. Furthermore, digital signature schemes are often used as building blocks
in more complex protocols. The most well-known (and used) digital signature
schemes today are RSA and DSA. In Chapter 2 we describe these definitions in
more details.

The downside is that uses of digital signatures as the digital equivalent of
a pen and paper signature have privacy issues, since they rely on unique iden-
tifiers, namely the verification key, or the credentials which have been signed
by a third party. Luckily this does not have to be the case. There are several
ways to achieve some kind of private authentication, but the two most import-
ant techniques for achieving authentication, while still preserving anonymity,
are group signatures and anonymous digital credentials. We are going to re-
view these techniques in Chapter 4, but we will briefly mention them here for
completeness.

Group signature schemes, first introduced by Chaum and van Heyst [71],
allow a member of a group to sign a message on behalf of the group in a way
so that the verifier cannot determine which group member signed the message,
only that it was indeed signed by a member of the group. Among other things,
this enables us to construct credentials, that show nothing more than the fact
that the user has been (together with many others) authorized to access a given
resource. While group signatures are limited to signing on behalf of a single
group, anonymous digital credentials are the privacy friendly version of having
a X.509 certificate containing all your personal information, signed by a trusted
third party. As in the case of a single X.509 certificate, the user will have a
number of credentials certified by a trusted third party, but the difference is that
the user decides which credentials he wants to show possession of, instead of
just sending the entire certificate to the verifier. This is done by proving in zero
knowledge, certain properties of his credentials. Anonymous digital credentials
were first introduced by Chaum in 1985 [68].

1.4 Outline

First we examine the issue of privacy and authentication related to RFID sys-
tems in Chapter 3. We look at how privacy can be protected, and give an
overview of some related work in that area. Then we present our results about
tradeoffs between security and efficiency in RFID systems. More specifically we
look at the definition of strong privacy by Juels and Weis [125], why efficient
private RFID authentication protocols are not possible in this (strong) model,
and then we propose more realistic assumptions about the adversarial behavior,
that allows us to design more efficient protocols that still remain secure in many
practical applications of RFID.

Next, we look past RFID and take a more general look at anonymous au-
thentication. In Chapter 4 we survey some cryptographic techniques to protect
privacy, and then we will look at our definition and design of what we call an
unclonable identification scheme.

In Chapter 5 we turn to other issues regarding authentication in pervasive

12 Chapter 1. Introduction

computing, where privacy is not a primary concern. We present two of our
results in this area. First we briefly review our proposal for a login system for
a hospital environment where usability was the key factor, and then we look
at an anti-theft policy for pervasive computing devices where the key property
is to authenticate the user towards a system of devices in his own home. We
describe how the policy can be implemented, and as part of that, we also propose
two different protocols for performing key exchange between devices in a user
friendly manner. The aim of this is to highlight the relation between security
and usability, and propose some solutions where these two are not mutually
exclusive.

Then in Chapter 6 we examine batch verification of signatures. Short signa-
tures are important in many applications, especially in the pervasive computing
realm, but unfortunately most short signatures are slow to verify. First we sur-
vey related work on batch verification, and conclude that no suitable batch
verifiers exist for short signature schemes. We propose the first batch verifier
for messages from many signers without random oracles and with a verification
time where the dominant operation is independent of the number of signatures
to verify. We further propose a new signature scheme with very short signa-
tures, for which batch verification for many signers is also highly efficient. In
the last part of the chapter, we provide a general framework for designing batch
verifiers, and we apply this framework to batch verification of certain types of
anonymous authentication such as group and ring signatures. Furthermore, we
implement some of the schemes and provide an in depth performance analysis,
which highlights a few issues we think implementers need to be aware of.

Chapter 2

Preliminaries

In this chapter, we introduce notation and basic concepts used in the rest of
this thesis.

2.1 Pairings

Since many of the schemes and techniques discussed in this thesis are pairing-
based, we briefly review pairings and their relevant properties.

Let PSetup be an algorithm that, on input the security parameter 1τ , out-
puts the parameters for a bilinear pairing as (q, g1, g2,G1,G2,GT , e), where
G1 = 〈g1〉,G2 = 〈g2〉 and GT are groups of prime order q ∈ Θ(2τ). The efficient
mapping e : G1 × G2 → GT is both: (bilinear) for all g ∈ G1, h ∈ G2 and
a, b ← Zq, e(ga, hb) = e(g, h)ab; and (non-degenerate) if g generates G1 and h
generates G2, then e(g, h) 6= 1. This is the general case, called the asymmetric
setting. A specialized case is the symmetric setting where G1 = G2. We will
always write group elements in the multiplicative notation, although the groups
G1 and G2 are actually implemented as additive groups.

In case we are only interested in the symmetric case, we will write that
PSetup is an algorithm that, on input the security parameter 1τ , outputs the
parameters for a bilinear pairing as (q, g,G,GT , e), where G = 〈g〉 and GT are
of prime order q ∈ Θ(2τ). This is similar to the definition for the asymmetric
case.

Since we are looking at various schemes based on these groups, we are
interested in groups that have the smallest representation of the group elements,
we want to know if schemes in the symmetric setting can be moved over to the
asymmetric setting, and finally want to be able to verify whether a given element
is a member of a specific group.

Size of Group Elements. Pairings are constructed such that G1 and G2 are
groups of points on some elliptic curve E, and GT is a subgroup of a multiplic-
ative group over a related finite field. All groups have order q. The group of
points on E defined over Fp is written as E(Fp). Usually it is the case that G1

is a subgroup of E(Fp), G2 is a subgroup of E(Fpk) where k is the embedding

13

14 Chapter 2. Preliminaries

degree, and GT is a subgroup of F∗
pk

. In the symmetric case G1 = G2 is usually

a subgroup of E(Fp).
In the following, we use numbers for security comparable to 1024 bit RSA.

The MOV attack by Menezes, Vanstone, and Okamoto states that solving the
discrete logarithm problem on a curve reduces to solving it over the correspond-
ing finite field [143]. Hence the size of pk must be comparable to that of a RSA
modulus to provide the same level of security, so elements of Fpk must be of
size 1024. But the size of the finite field is not the only thing that matters for
security. The group order q must also be large enough to resist the Pollard-ρ
attack on discrete logarithms, which means that q ≥ 160. Now assume that
|p| = |q| = 160, then we would need an embedding degree k = 6 to get the size
of the corresponding field close to the required 1024 bits. However, we could
also let |q| = 160, |p| = 512, and choose k = 2 to achieve the same. Both these
options have their advantages and disadvantages as discussed by Koblitz and
Menezes [130].

We have talked about how many bits are required to represent elements
in the finite fields, but what about the groups G1 and G2? Since they are
subgroups of a curve over the field, they are represented by their coordinates
(x, y) which are elements of the field, and hence one would expect their size to
be twice the size of an element in the field. However one only needs to represent
x and the sign bit of y in order to recompute y later. Also, in some cases (when
G2 is the trace zero subgroup) elements of G2 can be represented as elements
of the field E(Fpk/2) instead, which only requires half the space [130].

To summarize: In the asymmetric setting, the best we can hope for are
group elements in G1,G2 and GT of size 160, 512 and 1024 bits respectively.
In the symmetric setting it seems the best curve is a supersingular curve with
k = 2, which means that elements of G1 = G2 and GT will be of size 512 and
1024 bits respectively. Finally, an important thing to keep in mind is that no
matter the order of the groups, performance is dominated by the operations in
the underlying finite field.

So how should one choose a curve when implementing a scheme? Unfortu-
nately there is no simple answer. It depends on what group is used the most in
a given scheme, if size of group elements or efficiency is most important, if the
scheme requires certain properties that are only available on some curves (such
as a homomorphism from G2 to G1), etc. Galbraith, Paterson, and Smart have
a more detailed discussion about these issues [96].

Testing Membership. Some schemes require that the input lies in a specific
group, but since the input might be supplied by the adversary we cannot trust
this to hold. We have to check it. For example, the proofs in Chapter 6 require
that elements of purported signatures are members of G1 and not E(Fp) \G1,
but how efficiently can this fact be verified? Determining whether some data
represents a point on a curve is easy. The question is whether it is in the correct
subgroup. Determining whether some data represents a point on a curve is easy.
The question is whether it is in the correct subgroup. Assume we have a bilinear
map e : G1 ×G2 → GT . In the schemes we use, the input is from G1, so this is

2.2. Complexity Assumptions 15

the group we are interested in testing membership of.
In most cases, if we want to check if an element y lies in G1, we must

check if yq = 1. While this might seem inefficient, it is usually not a problem
when working with pairing based schemes, since the time required for a single
exponentiation is insignificant compared to the time required for computing a
pairing. More about this in Chapter 6. Chen, Cheng, and Smart [72] discuss
membership testing for bilinear groups in more details.

2.2 Complexity Assumptions

In the following chapters, we will refer to these complexity assumptions.

Assumption 2.1 (Computational Diffie-Hellman [84]) Let g generate a
group G of prime order q ∈ Θ(2τ). For all p.p.t. adversaries A, the following
probability is negligible in τ :

Pr[a, b,← Zq; z ← A(g, ga, gb) : z = gab].

Assumption 2.2 (Decisional Bilinear Diffie-Hellman [34])
Let PSetup(1τ)→ (q, g,G, GT , e), where g generates G. For all p.p.t. adversar-
ies A, the following probability is at most 1/2 plus a negligible function in τ :

Pr[a, b, c, d← Zq; x0 ← e(g, g)abc; x1 ← e(g, g)d; z ← {0, 1};
z′ ← A(g, ga, gb, gc, xz) : z = z′].

Assumption 2.3 (LRSW [141]) Let PSetup(1τ) → (q, g,G,GT , e), X,Y ∈
G, X = gx, and Y = gy. Let OX,Y (·) be an oracle that, on input a value
m ∈ Z∗q, outputs a triple A = (a, ay, ax+mxy) for a randomly chosen a ∈ G. For

all p.p.t. adversaries A(·), the following probability is negligible in τ :

Pr[(q, g,G,GT , e)← PSetup(1τ);x← Zq; y ← Zq;X = gx;Y = gy;

(m, a, b, c)← AOX,Y (q, g,G,GT , e, X, Y) : m /∈ Q ∧ m ∈ Z∗q ∧
a ∈ G ∧ b = ay ∧ c = ax+mxy]

where Q is the set of queries that A made to OX,Y (·).

2.3 Zero-Knowledge Proofs and Proofs of Knowledge

Zero-knowledge proofs were introduced by Goldwasser, Micali, and Rackoff in
1985 [105] and constitute a central class of cryptographic protocols. In an
interactive proof system there are two players, namely the prover P who wants
to convince the verifier V about the validity of some statement. There are two
requirements for interactive proof systems. Completeness means that if the
statement is true then P should be able to convince V of this, and soundness
means that if the statement is false, no prover should be able to convince the
verifier about this with probability greater than some function of the input
length. More formally:

16 Chapter 2. Preliminaries

Definition 2.1 (Interactive Proof System) Interactive probabilistic turing
machines P(·),V(·) constitute an interactive proof system for a language L if:

Completeness If x ∈ L then

Pr[P (x)↔ V(x)→ 1] = 1

Soundness Let ν be a negligible function. For all x /∈ L, for all provers P ′

Pr[P ′ ↔ V(x)→ 1] ≤ ν(|x|)

An interactive proof system is usually only of interest if the verifier cannot
hilself determine whether x ∈ L or not, which is the reason the verifier is limited
to probabilistic polynomial time. However, in practise one might ask why P
can have more computational power than V. A variant of an interactive proof
system, where P is also bounded by probabilistic polynomial time, and where
his power comes from some additional auxiliary input, is called an interactive
argument.

Definition 2.2 (Interactive Argument) A pair of interactive probabilistic
turing machines P(·, ·),V(·) constitute an interactive argument for a language
L if:

Completeness If x ∈ L then there exist a witness ω such that

Pr[P(x, ω)↔ V(x)→ 1] = 1

Soundness For all x /∈ L, for all probabilistic polynomial time provers P ′

Pr[P ′ ↔ V(x)→ 1] ≤ ν(|x|)

Of course any language in NP has a trivial interactive argument. The prover
can simply reveal ω to V, but the interesting thing about interactive proofs and
arguments, is that it is possible to convince V of this without revealing any
information about ω. An interative proof system and interactive argument
with this property is called a zero-knowledge proof system and zero-knowledge
argument, respectively.

Informally, the definition of a zero-knowledge proof system (respectively
argument) is that we can replace P with a simulater, that without talking to
P at all, just assumes that x ∈ L and computes whatever is needed to make
V accept without V noticing that he is not talking to the prover. Soundness is
still preserved, since the simulator has some power than P does not. Namely,
if it should issue a message that would cause the verfier to reject, it can simply
rewind and issue a different message. More formally we first need to define a
simulator:

Definition 2.3 (Simulator) A probabilistic polynomial time turing machine
S is called a simulator for machine A’s interaction with machine B on input x,
if for all inputs y polynomial in |x| the following holds:

V IEWA(A(y, x)↔ Bx) ∼ V IEWA(A(y, x)↔ S(x))

2.3. Zero-Knowledge Proofs and Proofs of Knowledge 17

We can now formally define a zero-knowledge proof system.

Definition 2.4 (Zero-Knowledge Proof System) A proof system is called
a zero-knowledge proof system for a language L if for all verifiers V∗ there exist
a simulator S for all x ∈ L, for V∗’s interaction with P(x) on input x.

For completeness we also define a zero-knowledge argument:

Definition 2.5 (Zero-Knowledge Argument) A zero-knowledge argument
for a language L is an argument where the following holds: For all verifiers V∗
there exist a simulator S for all x ∈ L, for V∗’s interaction with P(x, ω) on
input x.

Zero-knowledge can be either perfect, statistical or computational depend-
ing on the simulator. Perfect means that the two views in the simulation are
identical, statistical means that there is a negligible difference between the real
and the simulated view, and computational means that an observer restricted
to polynomial time tests cannot distinguish the real and the simulated view
except with negligible probability.

Proofs of Knowledge. A proof of knowledge protocol is a protocol that
allows a prover, P, to convince a verifier, V, that he knows a certain quantity
ω that satiesfies some polynomial time computable relation R. We view this
as R taking two inputs. One that is known to both parties and one that is
known only to P. Proofs of knowledge was first introduced by Feige, Fiat, and
Shamir [90] and Tompa and Woll [183], and further redefined by Bellare and
Goldreich [24].

Clearly revealing ω is a proof of knowledge, but it is more interesting that it
is possible to prove possesion of ω without revealing any information about it.
A protocol satisfying this condition is called a zero-knowledge proof of knowledge
protocol. Informally, there exist a knowledge extractor K that uses P and V to
compute ω such that R(x, ω) is satisfied, where x is the common input. The
intuition behind this definition is that since it is possible to extract ω, it must
have been known to P, and hence the prover cannot make V accept an invalid
proof. More formally:

Definition 2.6 (Proof of Knowledge [140])
Let R(·, ·) be a polynomially computable relation. Let ν(x) be such that |ω| ≤
ν(x) for all ω such that R(x, ω) holds, and assume that some such ν(x) =
poly(|x|) is efficiently computable. A verifier V is a knowledge verifier with
respect to R if the following conditions hold:

Non-triviality There exist a prover P, such that for all x, ω, if R(x, ω) holds,
then

Pr[P(x, ω)↔ V(x)→ b : b = 1] = 1

18 Chapter 2. Preliminaries

Extraction (with error 2−ν(x)) There exist an extractor algorithm K and a
constant c such that for all x, for all adversaries A, if

p(x) = Pr[A ↔ V(x)→ b : b = 1] > 2−ν(x)

then, on input x and with access to P, K computes a value ω such that
R(x, ω) holds, within an expected number of steps bounded by (|x|+ν(x))c

p(x)−2−ν(x)

Based on a commitment scheme and, for instance, one of the protocols for
graph 3-colorability from [104], we can build generic proofs of knowledge for
any binary relation R that can be checked in polynomial time. The protocol in
its basic form is a three move protocol where the second message is a one-bit
challenge from the verifier. When we work with security parameter τ , we may
compose sequentially τ instances of this protocol, to obtain a zero-knowledge
proof of knowledge for R with negligible soundness error.

We will be concerned with proofs of knowledge of the following form, where
x is common input to P and V, and ω such that R(x, ω) is satisfied, is private
input to P. Furthermore we assume that P and V are probabilistic polynomial
time turing machines:

1. P sends a message a.

2. V responds with a random τ -bit string e.

3. P sends a reply z and V either accepts or rejects based on x, a, e, z.

Definition 2.7 (Σ-protocol) A protocol is a Σ-protocol for a relation R if :

Completeness The protocol follows the three move form above, and if P and
V follow the protocol, V will always accept.

Special Soundness From any common input x and accepting conversations
(a, e, z) and (a, e′, z′) on input x where e 6= e′, one can efficiently compute
ω such that R(x, ω) is satisfied.

Special Honest Verifier Zero-knowledge There exist a polynomial time si-
mulator S which on input x and a random e, outputs an accepting con-
versation (a, e, z) with the same probability distribution as conversations
between the honest P and V on input x.

2.4 Commitment Schemes

A commitment scheme is a two-party protocol between a committer and a
receiver, consisting of two stages: commit and opening. The committer takes a
value as input to the commit stage, and reveals this value in the opening stage.
A protocol is a secure commitment scheme if at the end of the commitment
stage, the receiver has no information on the committed value, and that there
exist only one value that the committer can reveal in the opening stage.

2.4. Commitment Schemes 19

A commitment scheme consists of a setup algorithm Setup that sets up
the public parameters for the scheme, as well as a deterministic commitment
algorithm Commit. Setup takes as input the security parameter τ and out-
puts the public commitment key ck corresponding to some message space M.
Commit takes as input ck , m ∈ M, and a random bitstring r of length τ .
To commit to a value m ∈ M the comitter generates a random r, computes
C = Commitck (m, r) and sends C to the receiver. In the opening stage, the
committer sends (m, r) to the receiver, who verifies C = Commitck (m, r). More
formally, we define a commitment scheme as follows:

Definition 2.8 (Commitment Scheme)
A non interactive commitment scheme for a message space M consists of al-
gorithms (Setup(·),Commit(·)(·, ·)) such that the following properties hold:

Computational Hiding For all probabilistic polynomial time adversaries A,
there exists a negligible function ν such that

Pr[ck ← Setup(1τ); (m0,m1)← A(ck); r ← {0, 1}τ ; b← {0, 1};
Cb ← Commitck (mb, r); b

′ ← A(m0,m1, Cb) :

m1,m2 ∈M∧ b′ = b] ≤ 1/2 + ν(τ)

Computational Binding For all probabilistic polynomial time adversaries A,
there exists a negligible function ν such that

Pr[ck ← Setup(1τ); (m1, r1,m2, r2)← A(ck) : m1,m2 ∈M∧
m1 6= m2 ∧ Commitck (m1, r1) = Commitck (m2, r2)] = ν(τ)

As stated, these definitions assume that the adversary is limited to probab-
ilistic polynomial time. There also exist commitment schemes where the hiding
(resp. binding) properties above, hold against a computationally unbounded
adversary.

Unconditional Hiding For all unbounded adversaries A we require

Pr[ck ← Setup(1τ); (m0,m1)← A(ck); r ← {0, 1}τ ; b← {0, 1};
Cb ← Commitck (mb, r); b

′ ← A(m0,m1, Cb) : m1,m2 ∈M∧b′ = b] ≤ 1/2;

Unconditional Binding For all unbounded adversaries A we require

Pr[ck ← Setup(1τ); (m1, r1,m2, r2)← A(ck) : m1,m2 ∈M∧
m1 6= m2 ∧ Commitck (m1, r1) = Commitck (m2, r2)] = 0

Unfortunately no commitment scheme can have both unconditional hiding
and binding. Assume that such a scheme existed. If P sent a commitment
C = Commitck (0, r) to V, there must exist an s such that C = Commitck (1, s).
If not, V could try all possible values of s and conclude that the commitment

20 Chapter 2. Preliminaries

could not have been to 1, thus violating the unconditional hiding property. But
if such a value s existed, then P could find it, and claim that his commitment
was to 1 instead of 0, thus violating unconditional binding.

A special flavor of commitment schemes are trapdoor commitment schemes
that besides the properties above, satisty the following property as well

Trapdoor

• There exist a setup algorithm Setup′ that on input the security para-
meter τ outputs a public key ck and a trapdoor t.

• If t, ck was generated by Setup′ there exist an algorithm Alter which
on input (t, C,m) outputs r such that C = Commitck (m, r).

Trapdoor commitment schemes are useful in cryptographic protocols that
require simulation, since we can give the trapdoor t to the simulator, which
makes it easier to create the view of the adversary.

2.5 Digital Signatures

Digital signature schemes play an important role in many areas. Not only as
the digital equivalent of a pen and paper signature, but also for their use as
building blocks to build more complex protocols. They were invented by Diffie
and Hellman [84] and later formalized by Goldwasser, Micali, and Rivest [106],
who defined a digital signature scheme as follows:

Definition 2.9 (Signature Scheme) A signature scheme is a triple of prob-
abilistic polynomial-time algorithms (Gen(·), Sign(·)(·),Verify(·)(·, ·)), where Gen
is the key generation algorithm, Sign is the signature algorithm, and Verify is
the verification algorithm, constitute a digital signature scheme for a family
(indexed by the public key pk) of message spaces M if the following properties
hold

Correctness If the message m is in the message space for a given public key
pk, and sk is the corresponding secret key, then the output of Signsk (m)
will always be accepted by the verification algorithm Verifypk . More form-
ally, for all values of m and τ :

Pr[(pk , sk)← Gen(1τ);σ ← Signsk (m) : m ∈M∧¬Verifypk (m,σ)] = 0

Security Even if an adversary has oracle access to the signing algorithm which
provides signatures on messages of the adversary’s choice, the adversary
cannot create a valid signature on a message not explicitly queried. More
formally: Let Q be the list of messages the signing oracle Sign(·)(·) has been
queried on. For all probabilistic polynomial-time oracle turing machines
A(·) with access to Sign(·)(·), there exist a negligible function ν(k) such
that

Pr[(pk , sk)← Gen(1τ); (m,σ)← ASignsk (·)(1τ) :

Verifypk (m,σ) = 1 ∧m /∈ Q)] = ν(τ)

2.5. Digital Signatures 21

A scheme secure under this definition is said to be unforgeable. An, Dodis,
and Rabin [3] proposed the notion of strong unforgeability, where if A outputs
a pair (m,σ) such that Verify(pk ,m, σ) = 1, then except with negligible prob-
ability at some point the signing oracle Osk (·) was queried on m and outputted
signature σ exactly. In other words, an adversary cannot create a new signature
even for a previously signed message.

Digital signatures as the equivalent of a pen and paper signature, have been
used in practise for many years in form of X.509 certificates. However, the
problem with this approach is that it is not privacy friendly. When verifying
a signature you need to obtain the certificate (containing the public key of the
user), which uniquely identifies that user, as well as reveals all his attributes
stored in the certificate. This is especially a problem if the same certificate is
used to authenticate the user towards different organisations.

However, some signature schemes have properties that can be used to build
privacy friendly protocols. Some of these properties include the ability to obtain
a signature on a message without revealing it and to prove that one possesses a
valid signature on a committed value. Camenisch and Lysyanskaya noted that
these properties are suffient for a signature scheme to be used in the construction
of anonymous digital credentials [57,140].

As an example of such a scheme, consider the signature scheme by Ca-
menisch and Lysyanskaya [58], which is secure in the plain model under the
LRSW assumption. Since we are going to use this scheme in future chapters,
we describe it here.

Definition 2.10 (Camenisch and Lysyanskaya Signature Scheme)
Given a security parameter τ , let PSetup(1τ)→ (q, g,G,GT , e) output the para-
meters for a bilinear map.

Gen Choose x ∈ Zp and y ∈ Zp and set X = gx and Y = gy. Then the secret
key is sk = (x, y) and the public key is pk = (X,Y).

Sign On input message m, secret key sk and public key pk, choose a random
a ∈ G and output the signature σ = (a, ay, ax+mxy).

Verify On input message m, public key pk and purported signature σ = (a, b, c)
check that the following equations hold

e(a, Y) = e(g, b) and e(X, a) · e(X, b)m = e(g, c)

From now on we will refer to this scheme as the CL signature scheme. As
mentioned before the CL scheme is interesting, because it allows us to obtain a
signature on a message m without revealing m, and to prove in zero-knowledge
that we know a signature on a message [57,140]:

To obtain a signature on the message m without revealing m, we give gm

as input to the signer instead of m. The algorithm still works if we choose
σ = (gr, ay, axM rxy), because axM rxy = ax+mxy. Of course the user needs to
prove knowledge of m in order for the signature scheme to remain secure. Note
that while this hides the message m, the value gm is still a unique identifier, if

22 Chapter 2. Preliminaries

the message is signed more than once. However, Camenisch and Lysyanskaya
provide a solution to this as well, by modifying the scheme to be able to sign
m by signing an information theoretic hiding commitment to m [58].

To prove possession of a signature in zero-knowledge, first blind the signature
σ by choosing random r, r′ ∈ Zp and setting σ̃ = (ar

′
, br
′
, cr
′r) = (ã, b̃, c̃r) =

(ã, b̃, ĉ). Then send this blinded signature to the verifier. Both parties now
compute vx = e(X, ã), vxy = e(X, b̃) and vs = e(g, ĉ), and the prover must now
show that he knows exponents µ and ρ, such that vρs = vxvxy

µ. If this holds,
and e(ã, Y) = e(g, b̃), then the verifier accepts.

2.6 Random Functions

A pseudorandom function (PRF) family is a family of functions indexed by
a key k (a random string of length τ bits), and can be designed to have any
desired (polynomial in τ) input and output length. The basic property is that
even given oracle access to the function (and not the key) it cannot be efficiently
distinguished from a truly random function. A pseudorandom function can be
constructed from any pseudorandom number generator using the construction
given by Goldreich, Goldwasser, and Micali [103].

Related to pseudorandom functions are verifiable random functions (VRF).
A verifiable random function is a pseudorandom function, that provides some
verifiable property of its output. For example if a random value r = Fsk (x) it is
possible to prove that r was generated correctly without revealing sk . Verifiable
random functions were introduced by Micali, Rabin, and Vadhan [144]. Later
Dodis and Yampolskiy constructed a more efficient VRF [89].

Chapter 3

RFID Privacy and Authentication

In this chapter we examine privacy in RFID systems, but these techniques can
also be applied in other contexts where a unique identifier is needed. We start
by surveying related work in Section 3.1 and in Section 3.2 we define a new
model for privacy in RFID systems and discuss some tradeoffs between security
and efficiency. This is based on a paper to be presented at the CT-RSA 2008
conference [82].

3.1 Introduction

RFID, as deployed in most areas, uses unique identification and no user control
over who gets access to the identity of the tag. The most likely privacy viola-
tions will therefore occur through surveillance. The information disclosed will
be information about the identity of the tag, but that might, with the help of
databases, provide information about the user’s activity or his persona. Basic-
ally anyone with an RFID reader could learn the identity of the tag, but most
likely privacy violations will occur because the identity of the tag is disclosed
to organizations, with whom the user might, or might not be familiar.

In this situation there are technical and non-technical mechanisms that can
protect privacy. Non-technical measures that can be used include openness,
consent and clear definitions of who the data controller is for a specific database
with identity codes, for example. Such non-technical solutions are based on legal
regulation in the form of legislation and/or voluntary agreements.

However, there are limits to how much protection legal mechanisms can
provide. First of all because it becomes a tradeoff between how much an or-
ganization can gain by violating the privacy of its users or customers vs. the
risk and the cost of being caught. Second, when data are gathered, they are
not going to be erased, but the law describing how one is allowed to use these
data might change in the future. Finally, just the fact that it is possible for an
organization to keep track of a user, has an effect on the privacy experience an
individual feels, whether or not any misuse of that information actually occurs.

As previously mentioned, control over our own data in one form or another,
is desirable and gives a stronger feeling of privacy, but there are several ways
in which the user can be given control over the reading of the identity code.

23

24 Chapter 3. RFID Privacy and Authentication

A mobile phone can, for example, be prevented from transmitting its identity
if we turn it off. There are ways to prevent a reader from reading data from
an RFID tag, for example by destroying the tag. A tag that does not work,
causes no privacy violations, but does not provide any benefits either. A better
solution would be to have the tag perform some form of authentication towards
the reader, so only authorized readers were allowed to learn the identity of the
tag. After the user acquires ownership of the tagged item, he could replace the
secret keys used in this protocol, thereby taking control over who can identify
the tag.

All in all, the primary method of safeguarding privacy when using global
identifiers, is to control which units are authorized to read an identity code.
There are many technical measures that ensures that only an authorized reader
can learn the identity of a tag, but these solutions require certain features from
the units. If we have small devices, such as RFID tags, they will usually not
have the computational resources to perform some of the heavy calculations
needed for e.g. public key cryptography, and even if it is possible to equip these
devices with such capabilities, many will refrain from doing so due to cost issues.
Also they will have limited, if any, input devices, making seemingly trivial tasks
such as typing in a password impossible. We return to the issue of usability in
Chapter 5.

Recently a lot of research has focused on the privacy issue of RFID tags.
More specifically, research has been done in the following areas:

Private authentication for RFID tags. The obvious way to prevent many
of these privacy problems, is to regulate who can determine the identity of an
RFID tag. This is done through a private authentication protocol between the
tag and the reader, that discloses information about the identity of the tag,
only to the reader which shares key material with the tag. However, designing
a private authentication protocol for RFID tags is different from designing a
private authentication protocol in general. The primary reasons for this, are
the requirements for a small implementation footprint and low computational
requirements. This means that only solutions based on symmetric key crypto-
graphy have been seriously considered, but symmetric key systems often have
the efficiency problem, that a reader must search its entire database of keys,
to find a key that matches the tag it is talking to, which clearly does not scale
well. Examples of schemes with this property are OSK/AO [14, 15, 154], YA-
TRAP [185], and schemes based on so-called hash locks [125,190].

Molnar, Soppera, and Wagner suggest a private RFID protocol that achieves
logarithmic time key-lookup, by using a binary tree of symmetric-keys, where
each tag is assigned a key of a path from the root to the leaf [146]. Nohara,
Inoue, Baba, and Yasuura propose a scheme with a similar design [153]. While
these schemes are more efficient, they do not provide the same level of privacy.
The reason is that when two tags share some key material, corrupting one of
them gives away some secret information, which can be used to recognize the
other tag. We take a closer look at this in Section 3.2. Burmester, Le, and
Medeiros use a different approach, where key-lookup is constant for tags that

3.1. Introduction 25

have not been queried by the adversary. Otherwise the key-lookup is linear [51].

Another technique was proposed by Ateniese, Camenisch, and Medeiros [8].
Their scheme permits re-randomization of an encryption, without knowing the
secret key. This could be used to store an encrypted identity code on the tag,
which could be transmitted to a reader. The reader would decrypt the identity
code, using its private key, re-randomize the encryption, and send it back to
the tag. Of course, since the tags are passive, privacy can only be guaranteed
when tags talk to honest readers, since a malicious reader could store anything
on a passive tag. Furthermore, allowing a tag to be writable many times by
anyone could cause other security problems, e.g. when using RFID to protect
against counterfeiting.

Given a lightweight one-way trapdoor function, one can convert any sym-
metric private authentication protocol with linear time key-lookup into a version
with a constant time key lookup, simply by encrypting the tag’s identity code
under the readers public key and thereby telling the reader what symmetric key
to use for the actual authentication protocol. An example of such a scheme was
proposed by Burmester, Medeiros, and Motta [50].

Since RFID tags have some things in common with another being with
limited computational power, namely humans, it has been suggested to use
human authentication protocols for RFID tags. The most well known example
of this are protocols based on the Learning Parity in the Presence of Noise
(LPN) problem:

Definition 3.1 (LPN Problem) Let A be a random q× k binary matrix, let
x be a random k-bit vector, let µ ∈ (0, 1

2) be a constant noise parameter, and let
v be a random q-bit vector such that |v| ≤ µq. Given A, µ and z = (A · x)⊕ v,
find a k-bit vector x′ such that |(A · x′)⊕ z| ≤ µq

The LPN problem is NP-Hard, but is also believed to be NP-Hard for ran-
dom instances. A protocol based on this problem, called HB, was proposed by
Hopper and Blum [115], and works in the following way:

Assume that a computer C and a human H share a bit vector x of length
k. H can now prove this fact towards C as follows: C generates a random k-bit
vector a and sends it to H. H generates a random bit v, where Pr(v = 1) = µ,
computes the bit z = (a · x)⊕ v and sends it to C. C accepts if a · x = z.

Assume for a moment that µ = 0. Then clearly if H knows x this bit will
be correct with probability 1, but if he has no information about x, H can only
answer correct with probability 1

2 . Hence by repeating this protocol n times, the
probability that C will accept in the case where H does not know x is 2−n. The
problem is that if a passive adversary captures O(k) valid challenge-response
pairs between H and C, he can determine x by gaussian elimination. This is
the reason for setting µ > 0. H will intentionally lie with probability µ, and C
will accept if fewer than µn responses are incorrect.

HB is not secure against an active adversary. If an adversary pretends to be
C and sends the same challenge to the tag multiple times, he can compute the
secret x with high probability based on the responses by H. This attack was
fixed in a version of the protocol, called HB+, by Juels and Weis [124]. The fix

26 Chapter 3. RFID Privacy and Authentication

is for the tag to send an additional blinding vector, which will be added to the
response.

The security proof for HB+ does not consider the information leaked by
a legitimate prover and legitimate verifier, which allows a man-in-the-middle
attack to extract the secret. This attack is described by Gilbert, Robshaw,
and Sibert [101]. In 2006 Bringer, Chabanne, and Dottax proposed a protocol
called HB++, which they claim to be secure against man-in-the-middle attacks,
but it requires additional key material and universal hash functions [48]. In
2008 Gilbert, Robshaw, and Seurin proposed yet another version of HB+ called
random-HB#, which is provably resistant to a broader class of attacks [102].

Also in 2006 Fossorier, Mihaljević, Imai, Cui, and Matsuura improved the
best known attack against the LPN problem, which significantly increases the
number of bits needed for the LPN problem to remain secure [95]. With more
complex protocols and increased key lengths, protocols based on the LPN prob-
lem have moved away from being human authentication protocols, but might
still be suitable for RFID tags.

This is in no way a comprehensive list of RFID authentication protocols.
Instead, we refer the reader to the website of Avoine, which he keeps updated
with current work on RFID privacy [12]. Also, Juels published a survey of
RFID security and privacy [122].

Security models. Several papers have proposed protocols for addressing the
privacy problem in RFID systems. However, not much work has addressed
formal definitions of security for RFID systems. Juels and Weis propose a
definition of what they call strong privacy [125], which in turn is based on
earlier work by Avoine [13]. Where Avoine aims to classify a range of adversarial
capabilities, Juels and Weis tries to describe just one single, but very powerful,
adversary, with a simple definition. The most important difference, however,
is that the model by Juels and Weis characterizes privacy in systems where
tags might share some secrets, whereas the Avoine model does not. We will
return to the definition of strong privacy in Section 3.2 and also see why it is
important whether tags share secrets or not. In independent work, Burmester,
Le, and Medeiros [51] propose a security definition based on Canetti’s Universal
Composability framework.

Other solutions. Here we briefly take a look at solutions to the RFID privacy
problem, that does not fall into the other categories.

The Blocker Tag by Juels, Rivest, and Szydlo [123] works by pretending to
be every possible tag at the same time, thus confusing the reader and preventing
it from reading the legitimate tag. This ensures privacy, but introduces other
problems, e.g. denial of service attacks. Standardized EPC global RFID tags
implement a KILL command, which can be used to physically destroy the tag.
While this prevents privacy violations, it also removes all the advantages there
could be by having an active RFID tag. IBM developed the so-called Clipped
Tag, which is an RFID tag where the user can tear off the antenna, thereby
reducing the range the tag can be read from, to a few centimeters. This allows

3.2. Tradeoffs between Privacy and Efficiency 27

normal use of RFID in the supply chain, but limits the risk of privacy violations
after the user acquires the tagged item. Unfortunately it shares the problem
with the KILL command, that in many after-sale applications, the tag is useless.

Finally we have the RFID Guardian which is a mobile battery-powered
device that offers personal RFID security and privacy management [166]. It
requires readers to authenticate themselves before being allowed to read a par-
ticular RFID tag. If the reader fails authentication, the RFID Guardian broad-
casts jamming signals to confuse the reader, just as the Blocker Tag does. In
this way the RFID Guardian enforces the privacy policy chosen by the user.

3.2 Tradeoffs between Privacy and Efficiency

As mentioned earlier, much work has focused on solving the security issues
of RFID systems, yet not much work has been done trying to define security
for such systems. In 2006 Juels and Weis proposed a definition of what they
call strong privacy [125]. Strong privacy is indeed a strong notion, primarily
because the adversary is given a lot of power: He can corrupt any number of tags
(but not the reader) and read their contents, he can eavesdrop and schedule the
tag/reader communication any way he wants, and he can himself select the tags
whose privacy he wants to break. The work of Juels and Weis only addresses
privacy, that is, making sure that the communication of a tag does not allow
an external adversary to determine the identity of the tag. Of course, another
natural requirement is that a reader should be able to determine whether the
tag it reads is valid and not fabricated by an adversary, for instance. Indeed, if
this was not required, tags could just return random information all the time or
just not reply at all. This would trivially be private, but would of course lead
to a useless system.

In this section, we propose an extension to the strong privacy definition so
one can also require completeness and soundness, with the intuitive meaning
that the reader accepts valid tags and valid tags only. More specifically, sound-
ness in the weakest sense means that we assume the adversary cannot corrupt
tags, and when the reader accepts an instance of the read protocol, a (uncor-
rupted) tag has been involved in that instance at some point. So in this weak
flavor, it is not required that the reader knows which tag it has been talking
to. We also suggest a stronger version where corruptions are allowed and the
reader must output the identity of the (honest) tag that was involved.

The concept of strongly private and sound systems is closely related to
existing concepts for anonymous identification schemes, such as identity escrow
schemes [129] or group signature schemes [9, 10, 33, 59, 71, 128], which we will
briefly review when we talk about anonymous authentication in Chapter 4 and 6.
They are not the same, however: Our model is designed to model RFID systems,
and where identity escrow and group signature schemes are by definition public-
key techniques, we want to cover techniques based on secret-key algorithms only.

The most important privacy issue regarding RFID tags is the issue of being
able to systematically track individuals as they carry RFID enabled goods from
the supermarket, embedded in the their clothes, etc. In this scenario, it is

28 Chapter 3. RFID Privacy and Authentication

reasonable to assume that the adversary cannot himself choose the tags he
wants to track. Strong privacy is therefore more than we need in this scenario,
so we introduce a weaker, but more suitable, definition called benign-selection
privacy.

Juels and Weis suggest a system that satisfies their definition, building on
earlier work by Weis, Sarma, Rivest, and Engels [190]. In this scheme, each tag
is given an independently chosen key, and the reader must search exhaustively
through all keys every time a tag is read. This of course does not scale well,
but Juels and Weis conjecture that this is, in a certain sense, unavoidable: In
strongly private systems that use only symmetric cryptography, and where tags
are independently keyed, the reader must access all, or at least a large fraction of
the keys in the system. Here, we prove this conjecture. We need to assume that
the system is complete and sound, but this is of course a natural requirement
and is necessary anyway to exclude degenerate cases, such as when tags only
send random information.

The limitation to symmetric cryptography is clearly necessary: With public-
key technology, a tag could send its identity encrypted under the reader’s public-
key, and then prove its identity using some shared-key technique, for instance.
This does not require the reader to look at any information that is not related
to the relevant tag. There has in fact been recent work in the direction of im-
plementing public-key on very small devices [22], but even if public-key enabled
RFID tags are only slightly more expensive than symmetric-key only tags, this
will still inhibit the use of public-key technology in large scenarios that require
millions of tags, in order to maximize profit. Therefore we believe the question
of what can be done with symmetric techniques is of interest, both theoretically
and in practice.

The limitation to schemes with independent keys is not surprising. It follows
from work by Molnar, Soppera, and Wagner [146] that when dependent keys
are allowed, we can have a system where the reader only needs to look at a
logarithmic (in the number of tags) number of keys. This comes at the price
that strong privacy only holds if the adversary is ”radio-only”, i.e., he does not
corrupt any tags. If the adversary corrupts even a single tag, strong privacy is
lost, and benign-selection privacy is lost with large probability. This makes it
natural to ask if there are alternative solutions where we can get some amount
of privacy with a larger number of corruptions without going back to systems
where the reader does exhaustive search over all keys.

In this section, we first argue that for a wide range of RFID systems, there
has to be a tradeoff between the efficiency of the reader and the resources we
can allow the adversary to have. We then propose a class of protocols offering a
new range of tradeoffs between security and efficiency. For instance, the number
of keys accessed by a reader to read a tag can be significantly smaller than the
number of tags while retaining soundness and privacy, as long as we assume
suitable limitations on the adversary.

3.2. Tradeoffs between Privacy and Efficiency 29

3.2.1 Model and Definition

Juels and Weis define strong privacy for RFID systems using a model of which
we give a summary here, for details refer to [125].

The system consists of tags Ti, i = 1..n and a reader R. For simplicity, we
assume that there is only one reader. Tags can receive SetKey messages which
will cause the tag to reveal its secret key, and the caller may then send a new
key to the tag. This can be used to initialize the system and also to model
an attacker corrupting a tag to learn its key. A tag may receive a (TagInit,
sid) message (where sid is a session id), which is used in the start of a session.
The tag will forget any previous value of sid, so a tag may only run a single
session at a time. Finally, the tag may respond to a protocol message ci, called
a challenge in [125], by a response ri. A protocol may consist of several rounds
of challenges and responses.

A Reader may receive ReaderInit messages, causing it to generate a fresh
session identifier sid and a first protocol message c0 to be sent to a tag. It may
also receive pairs of the form (sid, ri). It will then return either a new message
ci+1 to be sent to the tag or Accept or Reject. In [125], a reader, if it returns
Accept, is not required to say which tag it thinks it has been talking to. We
assume here that it may also return the identity of a tag. The reader keeps an
internal log of all challenge and response pairs for each session id that is active,
and decides based on this whether to accept or reject. A reader may be involved
in several sessions simultaneously, but its behavior in a session only depends on
messages it receives in that session and the fixed key material it holds.

We allow the adversary A to schedule all messages as it wants, and generate
its own messages. The adversary is parameterized as follows: r is the number of
ReaderInit messages it generates, s is the number of computational steps and
t is the number of TagInit messages it generates. Finally, k is a cryptographic
security parameter. Juels and Weis do not treat the number of SetKey mes-
sages, i.e., the number of corrupted tags, as a separate parameter, but simply
say it has to be at most n− 2. As we shall see, however, the number of corrup-
ted tags is a very important parameter, so we will define u to be the number of
tags corrupted by the adversary. A summary of these parameters can be found
in Figure 3.1. Note that this model also captures an adversary that passively
listens to a session between reader and tag, namely he starts a session with the
reader and one with the tag and simply relays messages between the parties.

k: security parameter n: number of tags in the RFID system S
r: number of ReaderInit messages allowed s: number of computational steps allowed
t: number of TagInit messages allowed u: number of SetKey messages allowed

Figure 3.1: Description of parameters

The system is initially setup by running a probabilistic key generation al-
gorithm Gen(1k) which produces a set of keys key1, ..., keyn to be assigned to
the tags. Of course, A does not know these keys initially.

Let S = (Gen,R, {Ti}) denote an RFID system. Strong privacy is defined

30 Chapter 3. RFID Privacy and Authentication

via an experiment called ExpprivA,S [k, n, r, s, t]. Here, we run the system where
the adversary may corrupt tags, initiate sessions, etc., observing the limitations
put on him. This ends by the adversary selecting two uncorrupted tags, called
T ∗0 , T ∗1 . He is then given oracle access to T ∗b where b is a random bit. He may
now again corrupt other tags and initiate sessions, and must finally guess the
value of b. However, we have to assume that in this last phase, when using the
reader to interact with T ∗b , he only learns whether the reader outputs accept
or reject and not the identity found by the reader. Otherwise, he could just let
the reader identify T ∗b . The system is said to be (r, s, t)-private if any (r, s, t)-
adversary’s advantage over 1/2 in guessing b is negligible as a function of k. We
propose here to define also (r, s, t, u)-privacy, which is the same, except that the
adversary may only corrupt at most u tags. However, for some systems, the
advantage that can be achieved depends not only k, but on all the parameters,
and does not tend to 0 as we increase k, if other parameters are constant. We
will therefore use a variant of strong privacy here:

Definition 3.2 Strong (k, r, s, t, u, n, ε)-privacy is defined via the experiment
ExpprivA,S [k, n, r, s, t, u] which is the same as Juels and Weis’ except that the ad-
versary can only corrupt up to u tags. We say that the system is strongly
(k, r, s, t, u, n, ε)-private if any adversary observing the limitations in the exper-
iment has advantage at most ε.

Experiment ExpprivA,S [k, n, r, s, t, u] Setup:

1. Gen(1k)→ (key0, ..., keyn)

2. Initialize R with (key0, ..., keyn)

3. Set each Ti’s key to keyi with a SetKey call

Phase 1 (Learning):

4. A may do the following in any interleaved order:

(a) Make ReaderInit calls, without exceeding r overall calls

(b) Make TagInit calls, without exceeding t overall calls

(c) Make SetKey calls, without exceeding u overall calls

(d) Send challenges and responces to tags and reader respectively, without
exceeding s overall steps

Phase 2 (Challenge):

5. A selects two tags Ti and Tj to which it did not send SetKey messages

6. Let T ∗0 = Ti and T ∗1 = Tj and remove both of these from the current tag
set

7. Choose a random bit b ∈ {0, 1} and provide A access to T ∗b

8. A may do the following in any interleaved order:

3.2. Tradeoffs between Privacy and Efficiency 31

(a) Make ReaderInit calls, without exceeding r overall calls

(b) Make TagInit calls, without exceeding t overall calls

(c) Make SetKey calls, without exceeding u overall calls to any tag in
the current tag set

(d) Send challenges and responces to tags and reader respectively, without
exceeding s overall steps

9. A outputs a guess bit b′

A succeeds if b = b′

As Juels and Weis note in [125], strong privacy may be too strong a notion
for many real world applications. In particular, the adversary can freely choose
the target tags he wants to be challenged on. He may not have that much
power in real life, where the choice may be forced on him by the environment
he operates in. One may try to model this by having the target tags be chosen
from some distribution independently of the adversary – this idea is already
present in the work of Avoine [13]. But it is very difficult to single out a
distribution that realistically models the environment. We therefore propose a
new model called benign-selection privacy where we allow any distribution as
long as it only selects uncorrupted tags.

Definition 3.3 Benign-selection privacy is defined via an experiment called
ExpbsprivA,S,D[k, n, r, s, t, u] which is the same as ExpprivA,S [k, n, r, s, t, u], except that
the adversary does not select the two tags T ∗0 , T ∗1 . Instead they are chosen at
random from distribution D among all uncorrupted tags. We think of D as
a probabilistic algorithm that only gets the set of corrupted tags as input, and
outputs the index of the target tags, i.e., the choice is uncorrelated to adversarial
activity other than corruptions. We say that the system is (k, r, s, t, u, n, ε)-
private with benign D-selection if any adversary observing the limitations in
the experiment has advantage at most ε.

In the following, it will often be cumbersome and unnecessarily complicated
to specify s, the number of computational steps, exactly. We will often replace
s by a poly(k), meaning that the statement involved holds for any adversary
that uses time polynomial in k.

It is natural to expect a system as described here to also have the properties
that valid tags are accepted, and that the adversary cannot impersonate a tag
unless he corrupts it. This aspect was not treated in [125] (but was also not
the main goal there). We propose to define this as follows:

Completeness Assume that at the end of session sid the internal log of the
reader R for that session contains pairs (cj , rj) where all rj

′s were gen-
erated by an honest tag in correct order. Completeness means that R
outputs Accept with probability 1 for any such session.

Strong Soundness Consider the following experiment similar to the privacy
experiment of Juels and Weis:

32 Chapter 3. RFID Privacy and Authentication

Experiment ExpsoundA,S [k, n, r, s, t, u] :

Setup:

1. Gen(1k)→ (key0, ..., keyn)

2. Initialize R with (key0, ..., keyn)

3. Set each Ti’s key to keyi with a SetKey call

Attack:

4. A may do the following in any interleaved order:

(a) Make ReaderInit calls, without exceeding r overall calls

(b) Make TagInit calls, without exceeding t overall calls

(c) Make SetKey calls, without exceeding u overall calls

(d) Send challenges and responces to tags and reader respectively,
without exceeding s overall steps

Let E be the event that occurs if R at some point outputs (Accept, i) at
the end of session sid where Ti is not corrupted, yet R’s internal entry
for sid only contains pairs (cj , rj) where Ti was not involved in generating
rj . We say that the system provides strong (r, s, t, u)-soundness if the
probability that E occurs is negligible in k.

Weak Soundness Weak (r, s, t)-soundness is defined by the same experiment
as above, except that R now only has to output Accept or Reject at the
end of a session, A is not allowed to corrupt tags, and the error event
E is now defined to be that R outputs Accept, and yet no tag has been
involved in the session.

3.2.2 Independent Keys

As mentioned earlier, our goal in this section is to prove the speculation by
Juels and Weis: In any strongly private, complete and sound RFID system,
the reader must access a key for every tag, or at least a large fraction of them,
when reading a tag. This can only be expected to hold, however, when keys for
different tags are independently chosen, and the system ”only” uses symmetric
cryptography. If public-key cryptography was allowed, a tag could first encrypt
its identity under the reader’s public-key, and then show possession of some
secret that is shared between reader and this tag only.

To prove something, we need to formalize the constraints on the system.
For the independence of keys, this is easy, we simply assume that each tag Ti
gets a key Ki chosen independently from all other keys by a key generation
algorithm Gi, i.e., Ki ← Gi(1

k) where k is the security parameter. As for the
constraint that ”symmetric cryptography and nothing else is used”, we will give
the system access to a pseudorandom function, φ·(·), and we will assume that
every key Ki in the system is used only as a key to this function, i.e., tag Ti
or reader use φKi(·) as a black box. This means that we can equivalently give

3.2. Tradeoffs between Privacy and Efficiency 33

tags and reader oracle access to φKi(·) for any key they need to use. Therefore,
when in the following we say that ”the reader accesses a key”, this means it calls
the oracle that holds that key.

Now, to model that the pseudorandom functions are the essential crypto-
graphic resource used, we will simply assume that the keys {Ki} held by the
reader and tags are the only secret data in the system. More precisely, we think
of the reader’s algorithm as an interactive Turing machine that takes no private
input, but may make oracle calls to φKi(·) for any Ki. Similarly, a tag may only
call its own pseudorandom function, whereas the adversary may only call φKi(·)
if he has corrupted Ti. We will say that such a system is essentially symmetric.

Note that an essentially symmetric system is not prevented from using
public-key, or using secret-key techniques in a non-blackbox way – the reader
could try to do a Diffie-Hellman key exchange with a tag, for instance, or gen-
erate a key for a pseudorandom function and use this key in any way it wants.
Nevertheless, the constraints we have defined are sufficient to show what we are
after. To get better intuition for why this is the case, one may note that, while
the reader is free to generate a public encryption key and send it to a tag, the
tag cannot immediately verify that the key comes from the reader and not the
adversary. Thus it would not be secure to send the tag’s id encrypted under
the public key.

The first lemma formalizes the straightforward intuition that if keys are
independent, a reader cannot determine if it is talking to a valid tag unless it
accesses the key for that tag. More formally:

Lemma 3.1 Consider an RFID system that is complete, weakly (1, poly(k), 0)-
sound, and uses independent keys. Consider a session between reader and a
tag where the adversary does not modify the traffic. In any such session, the
algorithm executed by the reader when reading a tag Ti will access Ki, except
with negligible probability.

Proof. We consider all probabilities as taken over the choice of keys and the
random coins used by tag and reader in the session. Let E be the event that
the reader does not access φKi . By completeness, the reader should accept
with probability 1, so the probability that the reader accepts and E occurs
equals Pr(E). Assume for contradiction that Pr(E) is non-negligible. Then
an adversary could fabricate his own tag T ′i with a key K ′i generated by Gi,
and start a session between this tag and the reader, while simply following the
protocol. Now by independence of keys, as long as E occurs, conversations
with T ′i and Ti are perfectly indistinguishable. Hence, the reader accepts with
probability at least Pr(E), which contradicts weak soundness. 2

The next theorem uses the observation that in an essentially symmetric
system, the only difference between the honest reader and an adversary is that
the reader has access to all keys, while the adversary initially does not. He can,
however, corrupt tags and get access to (some of) the keys. He can therefore
potentially run the same algorithm that the reader uses when reading a tag.

Theorem 3.1 Assume an essentially symmetric RFID system is complete and
weakly (1, poly(k), 0)-sound. Assume also that the reader algorithm accesses at

34 Chapter 3. RFID Privacy and Authentication

most αn of the keys, for a constant α < 1/2. Such a system cannot have strong
(k, 0, poly(k), 1, αn, n, 1/2− α)-privacy

Proof. We describe an adversary that will break strong privacy for any system
that is complete and weakly sound and where only αn oracles are accessed.
The adversary picks uniformly a pair of tags Ti, Tj , and uses these two as the
challenge pair (T ∗0 , T ∗1) from the strong privacy definition. It then gets oracle
access to T ∗b , where b = 0 or 1 and should try to guess which of the two it is
talking to. To do this, it executes the read protocol with T ∗b , and while doing
so, it emulates the reader’s algorithm. Whenever the reader algorithm wants
to access Kt, the adversary corrupts Tt, and may now call the pseudorandom
function with key Kt. This goes on until the reader algorithm wants to access
Kt where t = i or j. In this case the adversary outputs 0 if t = i and 1 otherwise
and then stops.

To analyze the probability that this adversary has success, suppose, for
instance, that b = 0. Since our adversary follows the protocol when talking to
T ∗b , we can apply Lemma 3.1 to conclude that the reader will access Ki when
talking to T ∗b with probability essentially 1. On the other hand, the probability
that it will not access Kj is greater than 1−α because only αn keys are accessed
(one of which is Ki), and given i, j is uniform over all values different from i.
It follows that the adversary’s guess is correct with probability 1 − α which is
a constant greater than 1/2 and hence we contradict strong privacy. 2

Note that since the adversary we construct in the proof selects target tags
uniformly, this same argument also shows that a system as specified in the
theorem cannot even have benign D-selection privacy where D is the uniform
distribution.

One might use some form of pre-computation to perform key lookups more
efficiently. For example Avoine, Dysli, and Oechslin [14, 15] propose to use
Hellman tables [113] in the protocol of Ohkubo, Suzuki, and, Kinoshita, to
reduce key lookup time to O(n2/3) at the cost of using an additional O(n2/3)
space [154]. Since the construction of the table requires accessing all keys in
the system, methods using Hellman tables do not immediately contradict the
lower bound. We can, however, argue that such methods cannot provide both
soundness and privacy: To initialize such a table one must predict all possible
outputs from the tag, which in turn means that the tag can only have a fixed
number of outputs, m. Juels and Weis show how to break strong privacy for such
a scheme, simply by querying a tag m times, and use the reader to distinguish it
from another tag that has been queried less than m times [125]. Note that the
reader can only accept having the same conversation once with a tag, otherwise
a simply replay attack could break the soundness.

3.2.3 Correlated Keys

We have shown in the previous section that if we want strong privacy and tags
have independent keys, the reader has to access least half of the keys in the
worst case. This obviously does not scale well, so we now look at how much

3.2. Tradeoffs between Privacy and Efficiency 35

privacy and soundness we will loose in return for efficiency if we allow the keys
to be correlated.

It was already known from the work of Molnar, Soppera, and Wagner that
using correlated keys, one can obtain the property that the reader only needs to
access a logarithmic number of keys [146]. Unfortunately, this comes at the price
that strong privacy is lost already if the adversary corrupts a single tag. This is
due to the fact that the system works with a pair of keys (K0,K1), where half
the tags hold K0, the other half hold K1 – as well as many other keys, arranged
in a tree structure, which is not important here, however. Corrupting a single
tag tells the adversary one of the keys, say K0. The protocol is such that one can
easily extract from the responses tags give, a part that is computed only from
K0 or K1. This gives the adversary a way to compute from the responses of an
uncorrupted tag which of the two keys it holds. Since half the tags hold K0,
2 sessions with random chosen tags will locate two tags holding different keys
with probability 1/2. Clearly, using two such tags as the target in the privacy
experiment, the adversary can identify with certainty which tag he talks to.
It is not even private with benign selection, no matter which distribution is
used: the distribution is by definition independent of which keys are held by
uncorrupted tags, so we again have that the target tags hold different keys with
probability 1/2. Of course, an error probability of 1/2 is too large in practice.

This makes it natural to ask if we can get privacy with a larger number of
corruptions without going back to systems where the reader does exhaustive
search over all keys.

3.2.3.1 A Necessary Tradeoff

First, it is useful to observe that in the kind of systems we look at here, some
tradeoff between efficiency of the reader and privacy is unavoidable: suppose
the key generation algorithm works by generating independently a number of
keys, and then assigning to each tag a subset of these keys. The system we
propose below, as well as the systems proposed by Molnar et al. and by Juels
and Weis, are all of this type.

Let K be one of the keys used. We will say that K is efficiently decidable if
there is an efficient algorithm that, when given K and a session between a tag
T and the reader, can decide whether T holds K or not. For instance, it may
be that the tag, if indeed it holds K, computes a particular part of its response
only from K. One can then from K compute what the tag should say if it
knows K and compare to what it actually said. In the systems from [125,146],
all keys are efficiently decidable.

An efficiently decidable key can be used by the reader towards identifying
the tag it is reading, because it can tell whether the tag is in the set of tags
that know K or in the complement. However, such a key can also be used
by the adversary, who may learn K by corrupting a tag, and can now also
distinguish tags that know K from those who do not. Clearly, if the adversary
can locate two tags, of which one holds K and the other doesn’t, then he can
break strong privacy. Let p(K) be the number of tags that hold the key K. The
case where p(K) = n/2 is the case where the reader gets maximal information

36 Chapter 3. RFID Privacy and Authentication

from knowing K, namely one bit of information on the identity of the tag.
Unfortunately, this is also the optimal case for the adversary, since interactions
with a constant number of tags will be sufficient to locate two target tags that
can be used to break the privacy.

One may treat this problem either by letting every part of the tag response
depend on several keys, or make sure that p(K) is small for every efficiently
decidable key K. Both approaches make life harder for the adversary as well
as for the reader. We give below an example of the second approach.

3.2.3.2 A Tradeoff Construction

Our construction depends on two parameter, v, c. Typically, v will be quite
large, say v = nd for some constant d < 1, while c may be something small, say
constant or logarithmic in n. We will assume that we have a pseudorandom
function φ·(·). It is straightforward to construct such functions from a crypto-
graphic hash function by simply hashing the key together with the input, this
is provably secure in the random oracle model. Other constructions based on,
e.g., AES are also possible.

The key generation involves generating c lists of keys to the pseudorandom
function φ, Kj = (kj1, k

j
2, ..., k

j
v) for j = 1..c.

K1 = k1
1, k

1
2 , k

1
3, k

1
4, . . . , k

1
v

K2 = k2
1 , k

2
2, k

2
3, k

2
4, . . . , k

2
v

K3 = k3
1, k

3
2, k

3
3 , k

3
4, . . . , k

3
v

. . .

Kc = kc1, k
c
2 , k

c
3, k

c
4, . . . , k

c
v ki

Figure 3.2: Example: Keys assigned to a tag Ti with string stri = (2, 1, 3, . . . , 2)

We assign to each tag Ti a random string stri = (si,1, ..., si,c) ∈ Zcv, c keys
(k1
si,1 , ..., k

c
si,c), and a key ki that is unique to Ti (see Figure 3.2). The probability

that two tags will be assigned the same string is at most n2/vc, we assume v, c
are chosen such that this is negligible. Let nT , nR be nonces chosen by tag,
respectively reader, such that these values do not repeat. Then the protocol
between the tag Ti and reader is:

1. Ri −→ Ti: nR

2. R ←− Ti: nT , φksi,j (nT , nR), for j = 1, .., c, and φki(nT , nR). The intu-
ition is that the first c values allow the reader to identify the tag, while
the final value proves that the tag is who it claims to be.

For the j’th pseudorandom function value received, j = {1 . . . c}, the reader
searches through the v keys in Kj and checks if one of these will generate the

3.2. Tradeoffs between Privacy and Efficiency 37

value received, i.e., for each k ∈ Kj one checks if φk(nT , nR) = φksi,j (nT , nR).
If this is not the case, reject and stop. Otherwise note the index of the key.
The indices noted form a string (s1, .., sc). If this string matches the string
assigned to some tag Ti, and the final pseudorandom value received is equal to
φki(nT , nR), output (accept, i). Else output reject.

To show security of the system, we first go to the independent oracles model,
i.e., we replace each call to φ using key k by a call to a random oracle Ok, using
independent oracles for different keys. The adversary can only call an oracle
Ok if he corrupts a tag that holds k.

It is straightforward to see that if we model the hash function used in the
proposed construction of φ by a random oracle, then an adversary playing the
privacy or soundness game is exactly working in the oracle model just described.
For this reason and for simplicity, we will analyze the system in this model

The first result on our system shows that, without loss of generality, we may
consider only adversaries who do no talk to the reader:

Lemma 3.2 In both the privacy and soundness games, sessions that the ad-
versary initiates with the reader can be simulated without access to the reader,
but with access to those oracles that the adversary can access. The simulation
is perfect, except with probability negligible in k.

Proof. We describe an algorithm for simulating the sessions in question: In
any session, the reader first sends a nonce nR, this can be simulated by simply
following the reader’s algorithm for selecting nonces. The message that the
adversary returns must consist of a nonce nT and c+ 1 values r1, ..., rc, s. Note
that the reader checks these values against oracle outputs generated from the
fresh input nR, nT , and that we may assume that oracle answers are sufficiently
long so they cannot be guessed except with negligible probability. For these
reasons, the adversary can only hope to have the reader accept if he generated
each of the c+ 1 response values by either using an oracle he has direct access
to, or by starting a session with an uncorrupted tag and using (part of) the
tag’s response. If this is not the case, we can return reject to the adversary: in
real life the reader will reject such a response except with negligible probability.
But if the adversary has indeed generated the entire response by calling oracles
(directly or indirectly), we know the identity k′ of the oracle that generated the
last value in the response. If the call to oracle Ok′ was made by an uncorrupted
tag Tj , this has to be because that tag received nR as a challenge and therefore
produced a correct response for nonces nR, nT . If we see that the adversary
forwards this response to the reader, we return (accept, j) as the real reader
would have done. If the adversary has replaced any of the first c values with
other oracle responses, we return reject, which is correct except with negligible
probability.

The only remaining possibility is that it was the adversary who called Ok′ .
This means he must have corrupted the tag Ti giving access to this oracle, and
so he also has access to to the other c oracles that this tag possesses. Therefore,
having generated the message sent to the reader, we can check whether this
is a correct response from Ti. If this is not the case, we return reject to the
adversary. Otherwise, we return (accept, i). 2

38 Chapter 3. RFID Privacy and Authentication

The following lemma turns out to be essential for privacy:

Lemma 3.3 Consider an adversary that does not start any session with the
reader. Let M be the set of oracles that the adversary gains access to during the
privacy game. Let E be the event that the following condition is satisfied after
the game: the adversary has started at least one session with some uncorrupted
tag T , and one of the oracles assigned to T is in M . In the privacy game,
by convention, the adversary selecting the two target tags counts as starting a
session with both tags. Let t′ be the number of different tags the adversary talks
to during the game. The probability that E occurs is at most

ct′u

v
+

ct′u

v − u
Proof. Suppose we are at some point in the game where E has not occurred yet.
This means that for all uncorrupted tags the adversary has talked to, he knows
that they only have oracles he has no access to, but due to the randomness of
the oracles, he has no information on their identity.

The adversary may now start a session with a new tag he did not talk to
before, or corrupt a tag. For each of these moves, we bound the probability
that E will occur after the move:

Start New Session Since the adversary has not previously talked to the tag
Ti, given what he knows, stri is uniform. We can therefore model what
goes on as follows: look at one of the c positions in stri, and let x ∈ Zv
be the number in this position. Now, x is uniform over v possibilities,
and the adversary has success, if x happens to be one of the ≤ u values
corresponding to oracles he can access. So the adversary has success in
one position with probability at most u/v, and therefore has success in
any position with probability at most cu

v

Corrupt New Tag For the previously uncorrupted tag Ti, consider again x,
the number at some position in stri. Then given what the adversary
knows, before he corrupts Ti, x is uniform over at least v−u possibilities,
if the adversary talked to Ti before, he knows x does not match any of the
≤ u possibilities he knows from already corrupted tags. The adversary
hopes x will hit one of the ≤ t′ possibilities for tags he talked to, so the
probability of success is at most t′/(v − u) for one position and ct′

v−u for
all positions.

Finally, since there are at most t′ respectively u steps that could cause the first
respectively second kind of event, the lemma follows. 2

We are now ready to prove security of our construction.

Theorem 3.2 If the hash function used in the construction above is modeled by
a random oracle, then the RFID system is (poly(k), poly(k), poly(k), n)-strongly
sound, and is strongly (k, r, poly(k), t, u, n, ε)-private, where

ε =
ctu

v
+

ctu

v − u
+ negl(k)

and where negl(k) is a negligible function of k.

3.2. Tradeoffs between Privacy and Efficiency 39

Proof. Completeness is obvious from the fact that the strings assigned to tags
are unique except with negligible probability.

For soundness, recall that the adversary wins the soundness game if a session
is generated where the reader outputs (accept, i), but the (uncorrupted) tag
Ti did not participate. Since the input nonces are fresh and oracles answers
cannot be guessed in advance except with negligible probability, the oracle Oki
must have been called to generated the last part of the response. But this is
impossible since Ti did not participate and the adversary does not have access
to Oki as long as Ti is uncorrupted.

Finally, for privacy, note that by Lemma 3.2, any adversary A playing the
privacy game can be replaced by a new adversary A′, who does not start sessions
with the reader, and such that the advantage of A′ is smaller than that of A
by at most a negligible amount. This, together with Lemma 3.3 immediately
implies the privacy result. 2

Finally, we show that the adversary’s advantage in the benign selection
privacy game is much smaller:

Theorem 3.3 Our system is (k, r, poly(k), t, u, n, ε)-private with benign selec-
tion for any distribution D, and where ε = 2cu/v + negl(k)

Proof. As above, we can assume that the adversary does not talk to the reader,
at the cost of adding a negligible amount to the advantage. Now consider
the situation when the target tags are chosen. For each of the c positions
in the strings assigned to tags, the adversary can access at most u of the v
oracles assigned to this position. Hence, when an uncorrupted tag is chosen,
no matter how this is done, the probability that its oracle for this position is
known to the adversary is u/v since ”names” of tags are assigned uniformly and
independently. Since the two target tags hold a total of 2c oracles that could
be used to distinguish them, the probability that at least one of them is known
to the adversary is at most 2cu/v. On the other hand, if the adversary has no
oracles in common with the target tags, he cannot distinguish them at all. 2

3.2.4 Efficiency

The interest in this result is that it shows a possibility for a new tradeoff between
security and efficiency for large systems, where the adversary can be expected
to only corrupt or talk to a number of the tags that is very small compared to
the total number of tags in the system. More precisely, for parameter values
such that r, t′, u << v << n, but still n2 < vc. However, for particular values
of r, t′, u and c, v and hence n must very large to make the privacy advantage
be small. This has to do with the fact that we are asking for strong privacy and
this is a very strong demand. Below, we show that the systems performs much
better under the privacy definition with benign selection. On the practical side,
note that the reader needs to look at only cv keys which can be much smaller
than n. Also, each tag only has to hold c+ 1 keys. Although the total number
of keys in the system is greater than n, this does not mean that the reader has

40 Chapter 3. RFID Privacy and Authentication

to store this many keys – they can be generated pseudorandomly from a single
key when they are needed.

Let us look at a concrete example of parameters in the benign selection
model for any distribution. Suppose we choose v = 216 and c = 4. Then we can
accommodate over 33 million tags, say n = 225, and each tag only needs to store
5 keys. If the adversary can corrupt 100 tags, the above says that his chance
of distinguishing two tags that are chosen for him is at most 1/100. Note that
even if the adversary is lucky with one pair of tags, his chance against another
pair is still only 1/100, so we think this can be quite reasonable in practice. In
other words, even though a probability of 1/100 is not negligible in the usual
sense, this is not necessary, if the ”bad event” does not imply a complete break
of the system. With these parameters, the reader must search through at most
218 keys to identify a tag, which is clearly better than 225, which was needed
to get strong privacy. We can even increase n without increasing the number
of keys to search through, as long as we keep the probability that two tags will
be assigned the same key n2/vc reasonably small.

Chapter 4

Anonymous Authentication

In this chapter we look at some cryptographic techniques for anonymous authen-
tication. First we survey related known techniques in Section 4.1 and then we
introduce a new concept we call Unclonable Group Identification in Section 4.2.
This is based on a paper presented at the Eurocrypt 2006 conference [80].

4.1 Introduction

In Chapter 3 we looked at privacy in RFID systems, where the primary concern
was revealing the tag’s identity to unauthorized readers. The solutions we saw
were based on only revealing the tag’s identity to readers who shared a secret
key with the tag, but this is not very flexible. If multiple authorities need to be
able to read the same RFID tag, they are able to link sightings of that particular
tag. Furthermore, users have limited choices in protecting their privacy. If one
wants to use RFID for user authentication (ignoring for a moment that the
identity of a tag might be easy to spoof) he can either choose to provide the
identity, which will be linked to a database containing all information registered
about him, or he can choose not to disclose it. There is no option to prove just
the single fact he wants to prove about his identity, for example that he is
allowed to access a specific resource, without revealing everything.

In general privacy problems are likely to occur when an identification is not
context dependant, that is when a unique identity is shared across different
domains. This problem does not only apply to RFID tags, but to many other
technologies as well. In Denmark, for example, every citizen has a so-called
CPR number. This number is used to identify individuals everywhere from
government institutions, to the bank, and to the local video rental store. This
is convenient since it is a unique way to identify a citizen, and we all have some
form of ID card with this number printed on, but from a privacy point of view it
is an extremely bad idea. There are many other examples of unique identifiers
being used: Usernames, e-mail addresses, digital signatures, etc. We don’t solve
all privacy problems simply by showing these credentials to several organizations
in a private way. While it does protect against outsiders eavesdropping on the
protocol, it does not protect against insiders from these organizations.

However, there are no reasons to use unique identification in all contexts.

41

42 Chapter 4. Anonymous Authentication

There are technical solutions that ensure a certain degree of anonymity while
still having the same advantages as with a unique identifier. These solutions
can protect a user’s privacy by, for example, putting him in control of who
can access his personal information, providing anonymity, making his different
actions unlinkable, not leaving electronic footprints behind, etc. The thing that
all these solutions have in common is that they usually demand more: Both of
the unit doing the computation, but often also of the user, due to the increased
technical complexity.

This is often a problem in connection with pervasive computing, where many
units have limited computing capacity, meaning that traditional cryptographic
algorithms can not always be used, simply because they take too long, or use
too much memory. In Chapter 6 we take a look at how this affects certain
scenarios and how that might be solved in the context of digital signatures, but
in this chapter we assume that we are not severely limited by the computational
resources available. This makes sense when we are developing solutions that
will run on more expensive hardware.

Digital Signatures. As mentioned in Chapter 2, digital signature schemes
play an important role in many areas. Not only as the digital equivalent of a
pen and paper signature, but also for their use as building blocks to build more
complex protocols. Here we review some other forms of signature schemes.

Group signatures enable unlinkable anonymous authentication, in the same
way that digital signatures provide the basis for strong authentication proto-
cols. A group signature scheme allows members of a group to sign messages
anonymously on behalf of the group, but when a dispute arises a designated re-
vocation manager can revoke the anonymity of a group member. This is useful
in many cases, but especially in scenarios where many entities need to submit
authentic messages to a central service, without revealing their identity.

Group signatures were introduced by Chaum and van Heyst [71] in 1991
and have since then been the subject of much research. Most of the proposed
schemes have a security proof in the random oracle model [10, 33, 58, 59, 128],
but since the random oracle model has been shown not to translate into security
in the real world [60] there has been some interest in group signature schemes
secure in the standard model. Bellare, Micciancio, and Warinschi proposed a
security definition of group signatures and also described a construction us-
ing trapdoor permutations [25]. However, in that scheme the group is static
and all members must be given key material from the start. Bellare, Shi, and
Zhang [26] modified the security model to cover dynamic groups, and also split
the group manager into two roles; one that could enroll members into the group,
and one that could open a signature and reveal the identity of the signer. How-
ever, this construction was not efficient. Ateniese, Camenisch, Hohenberger,
and de Medeiros proposed an efficient group signature scheme without random
oracles [9]. However, if a group member’s key is leaked, all his previous signa-
tures can be identified, and the scheme is therefore not secure in BMW/BSZ
models. Boyen and Waters suggested group signatures that were secure against
the key exposure problem, and anonymous as long as the adversary did not get

4.1. Introduction 43

to see any openings of group signatures [42, 43]. However, the public key in
their scheme grows logarithmically in the size of the message space.

Ring signatures are in many ways similar to group signatures. They allow
any member of a group of users to sign on behalf of the group, but in contrast
to group signatures there is no way to revoke the anonymity of an individual
signature. Furthermore, any group of users can be chosen as members of the
”ring”, without any additional setup. Ring signatures were proposed by Rivest,
Shamir, and Tauman [167] and were originally designed for leaking secrets in an
authenticated way, without revealing exactly which individual leaked the secret.
Another application is to use ring signatures to build designated verifier signa-
tures, or deniable signatures. A designated verifier signature only convinces a
specific recipient of the authenticity of the message, but cannot be transferred
beyond its intended recipient. Designated verifier signatures can be realized
with a two member ring signature: The signer and the recipient. The recipient
knows that he did not sign the message, so the other party must have, but any
third party does not know which of the two parties signed it, since the recipient
could have produced the signature himself. Designated verifier signatures were
proposed by Jakobsson, Sako, and Impagliazzo [121].

Anonymous Credentials. As mentioned in the introduction, a credential is
an attestation of qualification, competence, or authority, issued to some subject.
That could be a drivers license, a passport or even money could be viewed as
a single-use credential granting you the right to spend up to a certain amount.
Digital credentials are the digital equivalent of real world credentials, however
much more versatile.

Anonymous credential systems, also called pseudonym systems, are systems
consisting of users and organizations. Users are known to organizations by
virtual identities, called pseudonyms. Credentials are issued to pseudonyms in-
stead of to the actual users, and users are able to prove properties of credentials
issued by one organization, to another organizations where the user is known
under a different pseudonym, without revealing any more than the fact that
the user has a credential. Possession of a credential can be demonstrated an
arbitrary number of times and these demonstrations cannot be linked to each
other. It must be practically impossible for users to forge credentials even if they
cooperate. Also even if organizations collude, they should not be able to find
out anything about a user, in particular different pseudonyms belonging to the
same user cannot be linked. This is fundamentally different from the situation
where a user receives a single X.509 certificate containing all his credentials.

Anonymous digital credentials were first introduced by Chaum in 1985 [68].
Chaum described the general idea and applications, but did not provide a con-
crete scheme. Shortly thereafter Chaum and Evertse proposed the first con-
crete protocol realizing these ideas [69]. However, their solution required a
semi-trusted third party.

Later Damg̊ard described a protocol without this trusted third party, but
the solution is not efficient enough to be used in practise [79]. Brands described
an anonymous credential system that allows users not only to show possession

44 Chapter 4. Anonymous Authentication

of credentials from different organizations, but also to show properties of at-
tributes encoded into the credentials, such as the age being over eighteen [46].
While this work gives powerful techniques for a privacy enhancing public key
infrastructure, one drawback of this solution is that there can be only one or-
ganization granting credentials.

In a series of papers, Camenisch and Lysyanskaya identified a key building
block in constructing anonymous credential systems [56–58], which is the CL
signature scheme described in Section 2.5. Lysyanskaya noted that a signature
scheme with the following two protocols could be used to build an anonymous
credential system [140]:

Issue This protocol lets a user obtain a signature on a value without revealing
this value to the signer. The user gives the signer a commitment to
the message and receives in return a signature on that message, without
revealing anything else to the signer.

Prove A zero-knowledge proof of knowledge of a signature on a committed
value. The user gives a commitment to a message m to the verifier, and
then proves that he knows a signature on the message m.

The CL signature scheme satisfies these properties, and can thus be used
to build an anonymous credential system. The general idea is the following:
The user U chooses a secret key K which will be his identity, and a credential
issued by an organization O is a signature on this secret key. If the variant
of the CL scheme that allows signing multiple messages is used, O can encode
attributes in this credential, such as the users age. Showing the credential,
which is essentially a proof of knowledge of a signature, can then be extended
to prove certain properties of the signed message. For example that the age
is over eighteen. This can be done by making a commitment to the message
using an integer commitment scheme [81], proving that the message in this
commitment is the same as the message that was signed and finally use the
integer commitment and exact range proofs by Boudot [39] to prove that the
message committed to is greater than eighteen.

4.2 Unclonable Group Identification

As we have seen, a large body of the literature studies the problem of group
identification, where one wants to verify that a given user is a member of a
certain group, or has a certain credential, while ensuring that the user’s personal
identity is not revealed. In some applications, a dishonest user has an interest
in giving away to another person the data that allow him to identify himself as a
member of the group, such as passwords and secret keys. The security problems
implied by such a scenario have not been given much attention so far in the
literature. While some earlier works suggest to discourage this by forcing users
to either give away all their information, or nothing at all, we are interested in
cases where dishonest users in fact have an interest in giving everything away.

Here we study this type of problem. As a motivating example, consider the
issue of software protection: It is a well known fact that one of the strongest

4.2. Unclonable Group Identification 45

motivating factors in getting people to register as software users is if this enables
some functionality that cannot be accessed without registration (and payment).
This works particularly well if the functionality requires access to the vendor’s
website, because then reverse engineering the software is not sufficient to get
unauthorized access to the functionality. In the case of computer games, for
instance, the opportunity to play against others may only be available to re-
gistered users, and only through the vendor’s website.

Verifying that a user is registered may be done in many different ways.
In this section, we are interested in solutions that work under the following
constraints:

• An honest user can connect an unlimited number of times using the same
private key material.

• We want to protect users’ privacy, i.e., honest users have to identify them-
selves only as registered users and do not have to reveal their identities.

• We want to do as much as possible to protect against attacks where a
user ”clones” himself by handing a copy of his personal data (software,
secret key(s), etc.) to another person in order to get the benefits of two
registrations while only paying for one.

Note that the cloning attack may be easy or very hard to carry out physic-
ally, depending on how the user’s personal keys are stored, but it can probably
never be considered impossible [4, 5].

Of course, we can only hope to detect cloning if the user and his clone
actually connect to the vendor’s website. A further trivial observation is that
if first the user connects, then leaves the site and then the clone connects, we
cannot distinguish this from two connections made by an honest user, since he
would be using the same private key material in both cases. An event we can
hope to detect, however, is if both user and clone connect so that they are on
the site simultaneously, since this is exactly what cannot occur if the user is
honest. In this case, we not only want to detect the attack, we also want to
be able to reveal the identity of the user who cloned himself. Note that, apart
from the fact that the above simultaneous scenario is the only one in which we
can hope to catch a cloning attack, the scenario is also of practical relevance.
For instance, the case of a user who buys one copy of a game and distributes
it to all his friends so they can play against each other online, is exactly a case
where a number of clones would want to be connected simultaneously.

An unclonable identification scheme informally, is an identification scheme
where honest users can identify themselves anonymously as members of a group,
but where clones of users can be detected and have their identities revealed if
they identify themselves simultaneously. First we give a formal definition of this
primitive and in our Eurocrypt paper we showed that it can be realized assuming
existence of one-way functions, which is clearly a minimal assumption [80]. Here
we describe a more efficient implementation based on specific assumptions. This
solution is based on a new technique for proving in zero-knowledge, given gx in

46 Chapter 4. Anonymous Authentication

a group of prime order, that x was chosen pseudorandomly from a committed
secret key.

Of course, before attempting a construction such as we have sketched, one
should verify if existing primitives already allow solving the problem. First, one
might consider using an anonymous e-cash scheme [45,70], i.e., some number of
electronic coins are issued to each user, and users use them to ”pay” for access to
the site. This would lead to a functionality that is incomparable to the one we
sketched above: Cloning in this case means sharing e-coins with others, and so
the cloning attack is exactly double spending and can therefore be detected even
if the two spendings do not take place simultaneously. But on the other hand,
honest users can only use each coin once, and must therefore either possess a
very large secure memory, or come back for more coins throughout the life of
the system. This reveals information on how often a user connects, and is also
not consistent with our goal, namely a solution where you can join a group
once and then identify yourself an unlimited number of times using the same
key material.

One may also consider using group signatures [9, 10, 33, 59, 128], and have
users identify themselves by signing a message chosen by the verifier (using
his current system time, for instance). This achieves anonymity but does not
protect against cloning. To do this, one would need the property that if the
same user signs the same message twice, this would result in signatures that
could be detected as coming from the same user. This does not follow from the
standard definition of group signatures, and is actually false for known schemes,
since these are probabilistic and produce randomly varying signatures even if the
message is fixed. A similar comment applies to identity escrow schemes [129].

However, we do want to point out that after this work was published, Ca-
menisch, Hohenberger, Kohlweiss, Lysyanskaya, and Meyerovich, proposed a
more efficient solution to this problem [53]. We will sketch their solution in
Section 4.2.5.

4.2.1 Definition

An unclonable identification scheme involves a Group Manager GM, a set of
Verifiers and some number of Users. The idea is that after some initialization,
there will be several events, where some set of users prove at the same time to a
verifier V that they are members of the group managed by GM. Since we want
to detect if V is talking to clones of the same user at the same time, every proof
should take as input some string α that represents in some sense the current
time or phase of the protocol we are in. However, this does not have to be
linked to real time. What is important is that whenever a set of users want to
prove themselves, they should agree with V on a value for α that has not been
used before. More precisely, the demands are

• An honest V must be able to ensure that all users he talks to at a given
point prove themselves using the same value of α.

• An honest user should be able to ensure that he never executes Prove with
the same value of α more than once.

4.2. Unclonable Group Identification 47

One solution that works in the case where V runs a website that users
would like to be connected to for some length of time, is as follows: At regular
intervals, say every hour, each user who is connected must prove himself using
the current date and hour as α, as defined by the verifier’s system time. This
works if there is sufficient agreement on the time between users and V and if
users remember at which time they last did a proof. But many other solutions
are possible. Therefore, we have chosen to separate the way time is defined
from the definition as such by assuming that the entire system proceeds in
consecutive phases, with a unique number assigned to each phase. In each
phase, some subset of users decide to prove themselves to some verifier V, and
the number assigned to the current phase will be used as the string α. An
obvious way of doing this is to have the website publish the value of α which
is increased every time a new period starts. Users just have to make sure that
they only prove themselves when the published α is greater than the last value
they used for the proof.

The system is defined by probabilistic polynomial time algorithms Gen, De-
tect and two-party protocols Join and Prove. These are used as follows:

• Initially, GM runs Gen on input 1τ , to get public key pk and secret key
sk . We assume for simplicity that the set of possible pk ’s outputted by
Gen(1τ) can be recognized in polynomial time.

• When a user U joins the system he runs Join with GM. Common input is
pk . Private input to GM is sk . The protocol outputs to GM either reject
or a string id. Output to U is reject or a membership certificate certU .
We assume Join is executed on a secure channel so that no other entity
will have access to the data exchanged.

• To prove he is a member of the group, the user U executes protocol Prove
with a verifier V. Common input is the public key pk and the string α
assigned to the current phase, U uses certU as private input. At the end
of the protocol V accepts or rejects. Each user executes Prove at most
once in every phase.

• Algorithm Detect gets as input a number of transcripts of executions of
Prove, done with pk as input in the same phase. It outputs a (possibly
empty) list of strings. The intuition is that this algorithm should be able
to tell if the result of one or more cloning attacks are among a given set
of proofs, and if so, it will output the identities of the involved users.

Definition 4.1 The algorithms and protocols in a secure unclonable identific-
ation scheme must satisfy the following:

Completeness Assume GM, V and user U are honest. Execution of Gen,
followed by executions of Join and Prove always result in V accepting.

No Cloning Consider an honest GM who executes (pk , sk) = Gen(1τ). Con-
sider any probabilistic polynomial time algorithm Ũ who plays the follow-
ing game on input pk: In any phase, it can issue one or more of the
following requests:

48 Chapter 4. Anonymous Authentication

1. Ask that a set of honest users execute Join with GM (no data returned
to Ũ).

2. Ask to execute Join itself with GM.

3. Ask that some number of honest users who already joined the group
execute Prove with Ũ acting as verifier, using pk and the current
value of α as input.

Finally, Ũ executes Prove a number of times with a honest verifier V, on
input pk and the current value of α.

Let Extract be a probabilistic polynomial time algorithm which gets as in-
put the complete view of Ũ1 and outputs a user identity, for every instance
of Prove that V accepted in the last step. We demand that the following
property holds except with negligible probability:

All user identities output by Extract are among those that were gener-
ated in the conversations between Ũ and GM. Furthermore, the Detect
algorithm, when given as input the conversation between Ũ and V, will
output exactly those user identities that occur more than once in the out-
put of Extract.

Anonymity Consider any probabilistic polynomial time algorithm Ṽ, who will
act as both GM and verifier in an attempt to break the anonymity of
honest users. Ṽ gets 1τ as input and outputs a valid pk. It then plays
the following game: It interacts with a set of honest users, where in each
phase some users execute Join and other users execute Prove with Ṽ. Of
course, no honest user will attempt to do Prove unless he already did Join
successfully. At some point Ṽ stops and outputs a bit, and we let preal,Ṽ(k)
be the probability that 1 is output.

Consider a different game where Ṽ interacts with a simulator S. The
simulator gets as input for each phase the number of users who want to
execute Join and the number that want to execute Prove in the current
phase. These numbers are chosen with the same distribution as in the
first game. Let psim,Ṽ(k) be the probability that 1 is output in this case.

We demand that there exists a probabilistic polynomial time simulator S
such that for any Ṽ, |preal,Ṽ(k)− psim,Ṽ(k)| is negligible in τ .

Note that the definition of the no cloning property implies that if Ũ did
not execute any Join’s, there are no user identities Extract can legally output,
so we are then in fact demanding that all Ũ ’s proofs are rejected except with
negligible probability. Thus we do not need a separate soundness condition in
the definition demanding that non-members are rejected.

In this definition, we have for simplicity used the usual two-phase structure
of identification schemes to define soundness and non-cloning, where first the
adversary talks to the honest users and then tries to fool the honest verifier.
Thus we do not allow him to interact with an honest prover and and honest

1This means that Extract can rewind Ũ to any state that occurred during the game.

4.2. Unclonable Group Identification 49

verifier simultaneously. However, this is not a serious restriction, as there are
several techniques that allow handling even this concurrent case, such as the
so called designated verifier proofs [78, 121]. A designated verifier proof allows
the prover to prove a statement that only a designated verifier can verify. This
can be done for any Σ-protocol by using a trapdoor commitment scheme in the
commit phase [121]. While the prover cannot cheat, the verifier can use his
trapdoor to simulate a transcript for any statement.

As for the scheduling of the individual protocols in a single phase, we con-
sider two cases: One where in each phase the proofs given to a honest verifier
are composed sequentially, and one where the composition may be concurrent,
with a scheduling chosen by the adversary. We speak of sequential and con-
current security, accordingly. On the other hand, we assume that honest users
(provers) may interact concurrently with an adversarial verifier.

4.2.2 A Practical Solution

In this section, we present an unclonable group identification scheme, based
on two main ingredients: First a technique proposed by Camenisch and Lysy-
anskaya for digital signatures based on bilinear maps, with protocols for proving
knowledge of a signature on a committed value [58]. Second, a new technique
for proving that an element in a group is of form gψ where ψ is a pseudorandom
value computed from a committed key. We use the notation by Camenisch and
Stadler [59]: Given a public string x, a private witness w and a predicate pred,

PK{w : pred(x,w)}

means that we execute a Σ-protocol for the relation {(x,w)| pred(x,w) = true},
that is, a prover convinces a verifier that he knows w such that the predicate
on x and w is satisfied. We will also use the following variant:

PK(κ){w : pred(x,w)}

where κ is a bit string. This stands for the following: We execute the underlying
Σ-protocol in the normal interactive way, except that the verifier sends as the
second message a random string κ, and the challenge the prover has to answer
is determined as H(x, a, κ), where H is a hash function, modelled as a random
oracle, and a is the first message in the original protocol. The point of this
construction is that it allows simulation of the protocol without rewinding, due
to the ”programmability” of the random oracle, and for the same reason it also
allows knowledge extraction by standard rewinding. Since we will need the last
point for the proof, we cannot just use the Fiat-Shamir heuristic.

4.2.2.1 Proofs of Knowledge with Pseudorandom Exponents

Here we introduce some tools to be used in our construction. To this end,
we consider a group Gp of prime order p. We will assume p is chosen as a safe
prime, i.e., p = 2q+1 where q is also prime. Gq will denote the unique subgroup
of Zp∗ of order q.

50 Chapter 4. Anonymous Authentication

We further consider the case where a prover knows exponents x1, ..., xt ∈ Zp
such that β = αx1

1 · · ·α
xt
t for publicly known β, α1, ..., αt ∈ Gp. We want a

protocol that allows a prover P, to convince a verifier V, that he knows the
xi’s. That is, we want:

PK{(x1, ..., xt) : β = αx1
1 · · ·α

xt
t } (4.1)

A Σ-protocol for this relation works as follows:

1. P chooses r1, ..., rt ∈ Zp uniformly at random and sends to V χ =∏t
i=1 α

ri
i .

2. V chooses a random challenge ε ∈ Zp.

3. P responds with zi = ri+εxi mod p for i = 1..t. V checks that
∏t
i=1 α

zi
i =

χβε.

It is well known that this protocol is indeed a Σ-protocol for the underlying
relation [173]. A straightforward variant of the protocol allows us to do the
following type of proof:

PK{(x1, .., xt, x
′
1, ..., x

′
t) : β = αx1

1 · · ·α
xt
t , β

′ = α′
x′1
1 · · ·α′

x′t
t , x1 = x′1}

Basically, we run the original protocol twice in parallel for the two equations.
This would normally involve two independent sets of random numbers r1, ..., rt
and r′1, ..., r

′
t. However, to demonstrate that x1 = x′1 the prover must use r1 =

r′1 and the verifier checks that the responses z1, ..., zt, z
′
1, ...z

′
t satisfy z1 = z′1.

We will use this variant later, but for now we stick to the basic version for
simplicity. All techniques we describe here can also be applied to this variant
in a straightforward way.

We now consider a change to the protocol where P chooses the randomness
in the first message according to a pseudorandom function ΨK(i, α, b), where K
is a key committed to by P, α is a public input, i is a number and b is a bit. We
will use a variant of the pseudorandom function of Naor and Reingold, based
on the DDH assumption in Gq, so that outputs from Ψ are in Gq [152]. We
specify below how the function works and how the key is committed. However,
in the previous protocol, the random exponents were chosen in Zp, whereas the
pseudorandom function produces output in the subgroup Gq. To resolve this,
we let the exponents be chosen as the difference between two pseudorandom
values, which allows us to hit all of Zp. The modified Σ-protocol then works as
follows:

1. P sets ri = ΨK(i, α, 0), si = ΨK(i, α, 1) and sends to V χ =
∏t
i=1 α

ri−si
i .

2. V chooses a random challenge ε ∈ Zp.

3. P responds with zi = ri − si + εxi mod p for i = 1..t. V checks that∏t
i=1 α

zi
i = χβε.

4.2. Unclonable Group Identification 51

To argue that this is a Σ-protocol for the same relation, we need a result
by Perron [162]: Let QRp be the set of quadratic residues mod p. Then for
any a ∈ Zp∗, the set a + QRp contains almost as many quadratic residues as
non-residues: The difference is at most 1. Since in our case Gq = QRp, we get
the following lemma:

Lemma 4.1 The distribution of ui−vi mod p where ui, vi are chosen uniformly
in Gq, is statistically close to uniform over Zp.

This allows us to conclude the following:

Lemma 4.2 Under the DDH assumption in Gq, the above protocol is a Σ-
protocol for the Relation 4.1.

Proof. Completeness is trivial, and special soundness follows exactly as for the
previous standard protocol. For honest verifier zero-knowledge, we argue as
follows: To simulate we will choose ε and zi at random in their respective
domains and then set χ = β−ε

∏t
i=1 α

zi
i .

Now, assuming K is known only to P, pseudorandomness of Ψ implies that
our variant is indistinguishable from a protocol where ΨK(i, α, 0),ΨK(i, α, 1)
are replaced by uniformly random choice ui, vi from Gq. This creates a distribu-
tion of zi that is statistically close to the simulated distribution by Lemma 4.1.
2

Our goal is now to allow P to prove that he has followed the specified
algorithm for choosing the ri’s and si’s pseudorandomly. The first step of this is
to have P commit to each individual value under a public key chosen by a third
party (which will eventually be the group manager in our case). The public
key will be two random elements η, λ ∈ Gp, and P will make commitments
comi = ηriλωi and com′i = ηsiλω

′
i , for i = 1..t and random ωi, ω

′
i. We can now

ask P to prove that he committed to the correct values, that is, execute

PK{(ri, si, ωi, ω′i, i = 1..t) : χ =
t∏
i=1

αri(α−1)si ,

comi = ηriλωi , com′i = ηsiλω
′
i , i = 1..t}

The Σ-protocol for this is a standard variant of the one we presented above.
The final step is to show that each committed value was chosen according to
the pseudorandom function. For this we need to specify in detail how it works.
We assume that input strings to Ψ all have length at most τ (where τ can in
principle be arbitrary). A key to the function is a number K ∈ Zq. Finally, we
will need a hash function H that take a string str of length at most τ as input
and outputs an element in Gq. We will model this function as a random oracle.
The pseudorandom function is now defined as:

ΨK(str) = H(str)K mod p

52 Chapter 4. Anonymous Authentication

We note that the function mapping y to yK mod p is a weak pseudorandom
function if the DDH assumption holds in Gq, i.e., as long as y is randomly chosen
and is not controlled by the adversary, the outputs look random. However, in
our case, and assuming the random oracle model, the function is only used on
values produced by H, and these are guaranteed to be random, even if the
adversary chooses the inputs to H. This gives us the following lemma:

Lemma 4.3 In the random oracle model, and assuming DDH holds in Gq,
ΨK() as defined above is a strong pseudorandom function.

We will assume that the key K is committed to by P in a somewhat non-
standard way which, however, fits nicely with the construction we will see in
the following. Concretely, we assume that d = gγ

Kδrhu is given, for publicly
known g, h ∈ Gp and γ, δ ∈ Gq. With this, we can summarize our goal, namely
to give a Σ-protocol implementing

PK{(K, r, u, ωi, ω′i, i = 1..t) : d = gγ
Kδrhu ,

comi = ηΨK(i,α,0)λωi , com′i = ηΨK(i,α,1)λω
′
i , i = 1..t}

For this, it will be be enough to show how P can prove that a given commit-
ment com satisfies com = ηΨK(str)λω for public str. Since anyone can compute
ψ = H(str), our task reduces to:

PK{(K, r, u, ω) : d = gγ
Kδrhu, com = ηψ

K
λω} (4.2)

A protocol for this follows here:

1. P chooses s, w ∈ Zq, ν, φ ∈ Zp at random. He sends v1 = gγ
sδwhν and

v2 = ηψ
s
λφ to V.

2. V selects a random bit c.

3. P sends z1 = s−cK mod q, z2 = w−cr mod q, z3 = ν−cuγs−Kδw−r mod
p, and z4 = φ− cωψs−K mod p.

V checks as follows: if c = 0, that gγ
z1δz2hz3 = v1 and ηψ

z1λz4 = v2. If
c = 1, that dγ

z1δz2hz3 = v1 and comψz1λz4 = v2.

Since this protocol only works with a single bit challenge, we need to repeat
it an appropriate number of times to have a sufficiently small soundness error.

Lemma 4.4 The above is a Σ-protocol for Relation 4.2

Proof. Completeness follows by inspection of the protocol. Special soundness:
If for given v1, v2, the prover can send satisfactory answers z1, z2, z3, z4 to
c = 0 and z′1, z

′
2, z
′
3, z
′
4 to c = 1, we have by the checks carried out by V

that gγ
z1δz2hz3 = v1, ηψ

z1λz4 = v2. dγ
z′1δz

′
2hz

′
3 = v1 and comψz

′
1λz

′
4 = v2.

Combining these equations imply that com = ηΨz1−z
′
1λ(z4−z′4)ψ−z

′
1 and d =

4.2. Unclonable Group Identification 53

αγ
z1−z

′
1δz2−z

′
2h(z3−z′3)γ−z

′
1δ−z

′
2 , i.e., a, d are of the required form. Finally, hon-

est verifier zero knowledge is argued by the following simulator: Choose z1, z2

at random in Zq, z3, z4 at random in Zp and c as a random bit. If c = 0,
set v1 = gγ

z1δz2hz3 and v2 = ηψ
z1λz4 . If c = 1, set v1 = dγ

z1δz2hz3 and
v2 = comψz1λz4 . 2

4.2.2.2 The Scheme

We first explain the intuition behind the solution: When joining the group,
user U will make a commitment cU to a secret key K and will obtain GM’s
signature σU on the commitment under the signature scheme A by Camenisch
and Lysyanskaya [58]. He then proves that he is a member of the group by
proving that he knows a valid signature σU on some message cU (as well as
proving knowledge of this value), without revealing either value. Moreover
when giving this proof he uses some pseudorandom values that he obtains by
applying a pseudorandom function to the current α value, using K as key. He
also proves that he has done exactly this. This will force a clone of the user to
use the same K if he gives a proof for the same α, by security of the commitment
and signature schemes.

The proof given is actually a Σ-protocol, so the transcripts of proofs given
by user and clone are of form (a, e, z) and (a′, e′, z′). But when all inputs are
the same in the two cases, we must have a = a′. Furthermore, e 6= e′ with
overwhelming probability, so if both proofs are accepted, special soundness of
the protocol means that one can easily compute the prover’s secret, which will
immediately identify the user in question.

Gen Let GM take a security parameter τ and output a group G = 〈g〉 of prime
order p = Θ (2τ) where p = 2q + 1 and q is a prime. Let Gq denote the
unique subgroup of Zp∗ of order q. Let γ, δ be random generators of Gq.
Let e : G × G → GT be an efficiently computable bilinear map, and η, λ
be random generators of GT .

To set up the signature scheme, GM chooses the following values at
random: x ∈ Zp, y ∈ Zp and sets X = gx, Y = gy. The secret
key for the signature scheme is sk = (x, y) and the public key is pk =
(G,GT , g, e, X, Y, η, λ).

Join The user U chooses at random rU ∈ Zq and a key K ∈ Zq. U makes a
commitment cU = γKδrU mod p to K and sends it to GM. Note that it
is not necessary to have U prove that he can open cU , since later in the
Prove protocol, he must implicitly show he can open it to have the proof
accepted.

GM verifies that U is allowed to join the group and if so, he computes a
signature σ = (a, b, c) on cU where a is chosen at random in G, b = ay,
c = ax+cUxy and sends it to U . GM considers cU as the user’s id in the
following, whereas (K, rU , a, b, c) serves as the membership certificate.

54 Chapter 4. Anonymous Authentication

Prove Recall that the string α is common input to U and V. First U blinds his

signature σ by choosing at random µ, r′ ∈ Zp and computing σ̃ =
(
ã, b̃, ĉ

)
where ã = ar

′
, b̃ = br

′
, ĉ = (cr

′
)µ. Then U makes a commitment CU =

ηcUλsU for random sU and sends σ̃ and CU to V. Both compute

vx = e (X, ã) , vxy = e
(
X, b̃

)
, vs = e (g, ĉ)

V chooses a τ -bit string κ at random, and U proves knowledge of a signa-
ture on cU to V by giving the following proof:

PK(κ){(cU , ρ, sU) : CU = ηcUλsU , vs
ρ = vxv

cU
xy } (4.3)

Here, as ρ, the honest U uses ρ = µ−1 mod p. V will accept if this proof
is correct and it holds that:

e (ã, Y) = e
(
g, b̃
)

When applying the Σ-protocol from Lemma 4.2 to Relation 4.3, the part
relating to CU = ηcUλsU will have a first message of the form

χ = vr1−s1xy vr2−s2s ,

Where the ri’s and si’s are generated pseudorandomly as

r1 = ΨK(1, α, 0), r2 = ΨK(2, α, 0), s1 = ΨK(1, α, 1), s2 = ΨK(2, α, 1)

U must prove this fact, so he sends commitments

com1 = ηr1λω1 , com2 = ηr2λω2 , com′1 = ηs1λω
′
1 , com′2 = ηs2λω

′
2 ,

and proves them correct with respect to χ and uses the protocol from
Lemma 4.4 to show that each commitment contains a pseudorandom value
of correct form.

Detect Look at all proofs given in a phase and find all places where two con-
versations include first messages χ, χ′ where χ = χ′. If the two challenge
values involved in these two conversations are different, use the special
soundness property to extract a witness for the proof in question – this
will be a pair of form (cU , ρ). Output all cU ’s found this way.

Theorem 4.1 Assuming security of the signature scheme and the DDH as-
sumption in Gq, the scheme described above is a secure unclonable identifica-
tion scheme in the random oracle model, with sequential security. The Join and
Prove protocols are constant-round, and have communication complexity O(k)
bits, respectively O(k2) bits.

4.2. Unclonable Group Identification 55

Proofsketch. Completeness follows by inspection of the protocols. To achieve
the no cloning property, the required Extract algorithm will use standard re-
winding to extract witnesses for all proofs given. By a standard argument, this
will succeed for all proofs that were accepted by the verifier, with overwhelming
probability. Soundness of the proofs means we will extract a set of user id’s
and corresponding signatures, so security of the signature scheme implies that
this forms a subset of the user id’s defined in previous Join protocols. Now,
soundness of the proofs from Lemma 4.4 and the binding property of the com-
mitment schemes defined by (γ, δ), (η, λ) imply that the adversary must have
used the key involved correctly and consistently, and hence the value of χ will
be identical in all instances of Subproof 4.3, where the same key was used. This
allows Detect to recover the required information. As for anonymity, note that
all subproofs except the one from Subproof 4.3 can be replaced by (perfect)
simulations without changing the view of the adversary. After this change, the
key K is only used to call the pseudorandom function, and no other information
on K is present, since the commitment cU hides K perfectly. We can therefore
use Lemma 4.2 to conclude that also instances of subproofs from Equation 4.3
can be replaced by simulations without this being detectable by the adversary.
2

Efficiency We only consider the efficiency of Prove since the resources re-
quired by Setup and Join are negligible compared to the resources required by
Prove. Note that all proofs given during Prove can be done simultaneously,
using the same challenge in all Σ-protocols.

If we set k = 512 (a reasonable value for security equivalent to 1024 bit
RSA) and r = 16, where r is the number of times the protocol from Lemma 4.4
is repeated, Prove requires more than 1000 exponentiations, divided more or less
evenly between U and V). The exact numbers depend on various optimizations
one can perform by running some of the proofs in parallel, but it seems unlikely
to be able to get below 1000 exponentiations. Even with the choice of k = 512,
we would need to transmit more than 100.000 bytes of data between U and V.
Hence this is more a proof of concept, than a practical implementation.

4.2.3 On Concurrent Security

All the proofs given by honest users can be simulated without rewinding. Hence,
the only problem in obtaining concurrent security lies in the Extract algorithm
that is required for the no cloning property, and which requires rewinding in
both solutions.

To avoid this, we can use, at a small efficiency cost, the technique by Fisc-
hlin [94], which shows how to transform any Σ-protocol in the random oracle
model into a new one for which there is an on-line extractor, i.e., one can extract
the secret witness from a successful prover without rewinding.

Using this transformation on the Σ-protocols underlying our Prove-protocol
immediately gives a concurrently secure solution.

56 Chapter 4. Anonymous Authentication

4.2.4 On Membership Revocation and Framing

After discovering the identity of a dishonest user, the group manager needs to
act. In some applications it may be sufficient to take some appropriate, say,
legal action against the user in question. But it may also be necessary to remove
the user out from the group by ensuring that the value cU can never be used
again.

Since the value cU is unconditionally hidden in the Prove protocol, nothing
in the above systems prevents a dishonest user from proving membership of the
group again at a later point in time. To allow for revocation of memberships,
we can extend the protocol with a dynamic accumulator as described in [57].
An accumulator scheme [20,27] is an algorithm that allows one to hash large set
of values into a short value, called the accumulator such that there is a witness
that a given input is in the accumulator. A dynamic accumulator allows one to
efficiently add and remove values from the accumulator. It can be used in the
following way.

When the user joins the group and sends cU , the group manager adds cU to
the accumulator. To prove membership of the group, the user is now required,
in addition to the protocol we already have, to prove that the value cU is in the
accumulator. We will omit the details of how this is done, they can be found
in [57]. The solutions needs that cU is committed to, but this is already done
in our protocol.

When the identity of a dishonest user is discovered, the group manager
removes cU from the accumulator, which prevents the user or any clones of the
user from proving membership of the group, as long as the verifier is aware of
the new accumulator value.

An aspect we have not been concerned with in this work is whether the
group manager can frame an honest user, that is, create on his own a protocol
transcript where the user seems to have cloned himself. We believe framing is
not possible, since the group manager does not know the user’s secret key K.
The part of the Prove protocol where the user proves knowledge of K can only
be simulated without knowing K if one can control the outputs of the random
oracle. While we use this to show zero-knowledge in the theoretical analysis,
such control is not available to anyone in real life.

4.2.5 A More Efficient Solution

Inspired by our work, Camenisch et al. published a solution solving the same
problem much more efficiently [53].

We argued that e-cash was not a feasible solution since by nature a coin can
only be spent once. Hence it would require the user coming back to retrieve
more coins, which in turn would reveal information about how often he uses the
service. However, as Camenisch et al. showed, one can still use the idea from
e-cash, and especially compact e-cash, to solve this problem. In compact e-cash
schemes, users are issued cash in form of dispensers, that can dispense a limited
number of coins. However by allowing a dispenser to dispense an unlimited
amount of coins in general, but only allowing it to dispense a limited number

4.2. Unclonable Group Identification 57

of coins per time period, techniques from compact e-cash can in fact be used to
obtain an unclonable identification scheme.

Camenisch et al. furthermore extends their protocol to allow up to n au-
thentications per time period, arguing that it might not always be possible for a
user to keep exact track of the time when the last authentication was performed.

A dispenser consists of the seed s for a pseudorandom function Ψ, the users
secret key sk and the issuers signature on those values. When the user wants
to show coin number i, he generates two values S = Ψs(0, σ, i) and E = pk ·
Ψs(1, σ, i)

R, where σ is the time period and R is a random value chosen by
the verifier. Furthermore the user proves in zero-knowledge, that S and E
corresponds to a valid dispenser for the given time period. If a user shows more
than n coins during a time period, two of the coins must use the same value of
S. The verifier can then easily compute pk from the two different values of E.

Their solution requires only 13 multi-base exponentiations to perform one
authentication when n = 1 and 35 multi-base exponentiations when n is greater
than one, which is orders of magnitude more efficient than our protocol.

Chapter 5

Usability and Authentication

In this chapter we look at scenarios where the user must be authenticated
towards some system.

First we give an introduction to some security issues relevant for the rest
of this chapter in Section 5.1. In Section 5.2 we give a brief overview of our
proposed solution for a login system, to improve usability of pervasive comput-
ing in a hospital. This is based on a paper presented at the UbiComp 2003
conference [18] and has later been implemented as part of the Activity Based
Computing framework [156]. Finally, in Section 5.3 we look at the problem of
theft of pervasive computing devices, and propose a method for reducing that
risk. This is based on a paper presented at the AINA 2007 conference as well
as some additional work based on this.

5.1 Introduction

In the previous chapters we looked at ways of providing security in various
scenarios, with focus on which cryptographic techniques to use. However, in
any real world system there is one threat to any system that we simply can’t
ignore, and that is the legitimate users of the system. This issue becomes more
important when we work in the realm of pervasive computing, as we will often
find many computing devices in the homes of average users with little or no
knowledge about security. To make the issue even more complicated, many
of the devices in a user’s home will be small wireless devices, with limited
computational resources, and a different form of user interface (if any) than
what the user is acustomed to. In this chapter we present our work in two
different areas, with different security requirements. In the first scenario we
have many users who have to log in to computer systems multiple times during
the day in a hospital environment. Here the goal is ease of use and secure
authentication of the users. In the second scenario we want to secure a dynamic
network of devices in a user’s home. Being dynamic means that the user must
be able to add and remove devices from the network at will, which means that
ease of use is a key requirements. Adding devices to a network nesecerily means
that the devices must somehow exchange cryptographic key material. First we
develop a security policy for this setting and then apply this to key distribution

59

60 Chapter 5. Usability and Authentication

and theft protection in a home network.

Usability. There is a saying that computers are very easy to secure. Just
turn them off, lock them in a vault and throw away the key. That will however
make computers quite unusable. A more everyday example, is the problem
with passwords. Not using passwords at all, makes it very easy for users to
use a system, but not very secure against unauthorized access. Requiring long
passwords with a combination of letters and symbols, that must be changed
every week, is probably more secure, but will significantly hinder users in their
daily use of the system.

It has been argued for a long time that usability and security must go hand
in hand, yet it seems that in more or less every system today, the more security
features a given system has, the more cumbersome it is to use, but if security
features are optional (such as e-mail encryption) they will not be used [191].
There seem to be three different views on how to build usable security into
systems. The first is to build systems that perform security related functions
without any user intervention. Unfortunately this can be very difficult to realize
in practise for several reasons. One being that users might act in ways that
undermine the protection put in place, if they are unaware of the security
issues related to the work they are performing. Another reason might be that
security involves only allowing legitimate users to perform some action or access
some resource, but this requires configuration of a system to determine who
the legitimate users are, and it requires a way for the users to authenticate
themselves. Hence there is some security overhead that seems hard to get rid
off. The second idea is to build secure systems using metaphors that the user
already knows. The ”lock and key” metaphor is well known, but the problem
is that many of the security and privacy issues users face today, do not have a
corresponding metaphor that the user is used to handle in the real world. The
final solution is to educate users to use the security features a product provides.
This has over time proven to be quite unsuccessful. There is simply too much
to learn for the average user.

Security and usability, are features that must be designed into a system
from the beginning, but they require quite different skills to get right, which
might be one of the reasons it seems to hard to combine them [158,177].

Based on previous work, Pagter and Petersen [157] highlights the following
overall design principles for usable security:

• Design for a specific context

• Establish coherence between ”normal” actions and security actions

• Make security states visible

• Implicit infer security actions from user actions

• Use explicit security actions when users need to act in response to signi-
ficant security risks

In Section 5.2 and 5.3 we will see some of these design principles used.

5.1. Introduction 61

User Authentication. When using a personal computer, typing in username
and password is straightforward, but still it poses substantial usability problems
in some work environments, like hospitals [19, 172]. Looking at pervasive com-
puting, these usability problems are increasing because the user is using many
computers. Imagine that a user would need to type in username and password
on all pervasively available computers before he could start using them. Clearly,
if the pattern of login and logout is not considered a usability problem today,
it will most certainly become one in the years to come.

One solution is what we have termed proximity-based login (see also [76]),
which allows users to be authenticated on a device simply by approaching it
physically. The idea of enabling users to access a computer by simply walk-
ing up to it has a long history in pervasive computing research. This idea of
proximity-based login can be traced back to the pioneering work on the Act-
ive Badge System, which could be used to teleport an X Window session to
a display located in front of the user [28, 187]. Similarly, the AT&T Active
Bat system [188] was used to create “Follow-me Applications” where the user-
interfaces of the user’s application can follow the user as he moves around. The
application is shown on the display that is deemed to be in front of the user
as established via the user’s Active Bat [111]. The idea has later been adopted
by the Microsoft EasyLiving project [49]. In other pervasive computing envir-
onments different types of physical tokens are used as user identification. In
the BlueBoard project at IBM, a HID brand reader is used [168, 169]. In the
AwareHome at Georgia Tech RFID tags provide identity of individuals near
commonly used monitors [151], and at FX PAL the Personal Interaction Points
(PIPs) System uses RFID cards that stores the users identification as well as
passwords (the latter in encrypted form) [184]. Ensure Technologies’ XyLoc
system [88] uses short-range radio communication between a personal token
and a PC to establish the proximity of a user and to unlock the PC by pressing
a button on the token, not unlike the ones used to remotely unlock cars.

Key Exchange. Exchanging cryptographic keys are an important issue in
almost any system that relies on cryptography to implement some form of
security. Many problems such as keeping data confidential or only allowing
authorized entities to communicate, can be solved by well known (and not so
well known) cryptographic techniques, but in order to use these techniques we
need some key material. Since many small devices are not capable of perform-
ing the computations needed for public key cryptography, sensor networks and
other scenarios where many devices need to communicate securely, often rely
on symmetric cryptography, but then key distribution becomes problematic.
Many devices do not have a user interface for entering passwords, they might
be placed in hard to reach locations, or it might simply be too cumbersome for
the user to manually distribute key material. Furthermore, because of the lim-
ited resources available on these devices, it can be difficult to authenticate them
towards each other, to make sure that cryptographic keys are only exchanged
between authorized devices.

In cryptography one usually assumes an adversarial model where the ad-

62 Chapter 5. Usability and Authentication

versary can monitor and modify all communication in the network. However,
such an attacker rarely exist in the real world where devices spread over a relat-
ively small area (such as a house) need to agree on key material. For this reason
some alternative adversarial models have been considered. For example, Ander-
son, Chan, and Perrig propose a scheme for wireless sensor networks, where a
device starts by broadcasting a symmetric key with low power in the clear [7]. If
it does not receive a reply from another device, it increases the transmit power
and tries again. They call this whisper-mode and is supposed to limit the range
from where the key can be eavesdropped. When all devices have agreed on a
key with one of their neighbors, they start mixing their keys in the following
way. Assume we have three nodes A, B, and C and three keys KAB, KAC and
KBC which are used to protect communication between respectively AB, AC
and BC. If A wants a stronger key between himself and B he asks B and C
to negotiate a new key based on the previous key between A and B in such a
way that if KAB was secure before, then the new key K ′AB is also secure, but
if KAB was compromised, then K ′AB is still secure if KAC and KBC are secure.
If this is done at regular intervals by all devices, an adversary has to be able to
monitor all traffic to keep track of the keys. If he misses just one key-exchange
message, then after a while he will no longer have access to any keys in the
network.

However, in commercial applications the solution applied is usually much
more straightforward. In the ZigBee standard, each network has a unique sym-
metric encryption key that is broadcast in the clear to new devices when they
join the network. For example, the user presses a button on a master device,
and for the next 30 seconds, a new device is allowed to enter the network.

No matter now the implementation is done, such an initial key exchange is
often modelled after the resurrecting duckling principle proposed by Anderson
and Stajano [179], where a device accepts a key from the first device it receives
data from when it is turned on. However, this naive implementation does not
protect against an adversary who sets up a device with a more powerful signal,
so the new device will recognize it as its mother duck (for example, how many
have tried using the neighbors WiFi access point by mistake?). We will describe
the resurrecting duckling principle in more details later. One solution against an
adversary monitoring the initial key exchange, or an adversary pretending to be
the mother duck, is to use authentic channels for the initial key exchange [16].
For example by requiring physical contact between devices.

Often people argue that security, or rather cryptography, is unnecessary,
based on the limited range of the wireless technology used. The problem is that
the effective range of wireless technology depends on power levels, etc. dictated
by the standard, but an adversary is not forced to follow the standard. WiFi has
an advertised operational range of around 100 meters, yet it has been deployed
over a distance of 382 km [127]. Bluetooth has a range of around 10 meters,
but has been eavesdropped from over 1000 meters away [74].

Another problem arises when a single encryption key is used by all devices,
since compromising just one device leaves the entire network vulnerable to eaves-
dropping and message forgery. Also this technique is not suited in scenarios
where you need to authenticate messages from individual devices.

5.2. Context-Aware User Authentication 63

Theft Protection. Rarely is old-fashioned theft of the physical devices in
pervasive computing considered, despite of the fact that recent studies indic-
ate that this one of the major security issues for pervasive computing. Often
devices are not stolen, but rather forgotten in meeting rooms, taxis, etc. [163].
Another security issue in pervasive computing is related to high-end entertain-
ment systems (TV sets, HiFi equipment, gaming consoles, etc.) which are often
the target of systematic burglary.

Anti-theft policies and solutions are not widespread in the literature, maybe
because designers are afraid to disclose the inner workings of their mechanisms.
However, security-by-obscurity is rarely a good solution in the long run. One
recent contribution in the literature by Droz, Gülcü, and Haas, describe a sys-
tem relying on credits and blacklists, with each protected device periodically
requesting new credit in order to continue operating [86]. Another source on
anti-theft is Ross Anderson’s book on security engineering [6] which contain the
description of various solutions (not only for anti-theft) and their advantages
and disadvantages.

5.2 Context-Aware User Authentication

One thing alle the solutions based on proximity-based login have in common is
the lack of proper security mechanisms that can effectively ensure a secure user
authentication. In case of theft of a token, or by recording and replaying the
communication between the token and the reader, an adversary can access the
system and impersonate the legitimate user. The Smart Badge platform [178]
uses some improvements to reduce the problem of stolen tokens. The method
is to use a badge that can detect when it is no longer being carried. The link
between the badge and a particular user can then be removed, and the badge
can no longer be used for authentication purposes. It is however difficult to
judge from the paper exactly how such a smart badge can sense whether is
is being carried by its legitimate user. The Zero-Interaction Authentication
method of [77] takes an approach similar to the XyLoc system. A token is used
to gain access to a laptop with an encrypted file-system. To verify the user, he
is required to enter a PIN code on the token before he can start using it.

There is often an inherent tradeoff between usability and security. User
authentication mechanisms tend to be either secure, but less usable, or very
usable, but less secure. It is our aim to try and combine the two standpoints
and suggest a context-aware user authentication mechanism that is very us-
able as well as sufficiently secure for use in settings, where security matters,
e.g. a hospital environment. Traditionally a user authentication mechanism is
considered secure if it is a combination of something the user has (e.g. a smart-
card), something the user knows (e.g. a password), or something the user is (i.e.
a fysiological trait). Our design of a user authentication mechanism is based
on supplementing well-known user authentication mechanisms with knowledge
about the context and location of the user. In line with Denning [83] we thus
suggest location-based authentication and introduce location as a fourth element
in a user authentication mechanism.

64 Chapter 5. Usability and Authentication

Troubles with Login. In a study of the use of Electronic Patient Records
(EPR) at a large metropolitan hospital, we observed a number of usability prob-
lems associated with user authentication [19]. The EPR was accessed through
PCs distributed within the hospital, and it had a traditional login system with
usernames and passwords. Thus, whenever a clinician should access patient
information he had to log in and out on different PCs. Due to the way the PCs
were deployed and the nature of the work in hospitals, it was not uncommon
that a nurse, for example, would log in 30 times a day. Because this was a
highly cumbersome thing to do in a hectic environment, workarounds were es-
tablished. For example, users would avoid logging out, enabling them to return
to the PC without logging in later, passwords were shared among users and
made very easy to remember (’1234’ was the most used password at the hos-
pital), and users would often hand over user sessions to one another, without
proper logout and login. Hence, what was designed to be a secure system (with
traditional username and password user authentication) was suddenly turned
into a highly insecure system, because of obvious usability problems.

Activity-Based Computing. Even though this EPR system can in no way
be termed as pervasive technology, our study of its use has highlighted how
essential user authentication is to the design of pervasive computer support for
medical work in hospitals. In our second line of research we actively design and
develop pervasive computing technologies for hospital work. A central com-
ponent in this effort is a basic runtime infrastructure, which supports Activity-
Based Computing (ABC) [76]. The basic idea of activity-based computing is to
represent a user’s (work) activity as a heterogeneous collection of computational
services, and make such activities available on various stationary and mobile
computing equipment in a hospital. Clinicians can initiate a set of activities,
and access these on various devices in the hospital. For example, a nurse can
use the computer in the medicine room to get some medicine, and later when
giving this medicine to the patient she can restore the patient and medicine
data on the display in the hospital bed. We have built prototypes of wall-
size displays, displays embedded in tables, built-in computers in hospital beds,
and we are using various mobile equipment like TabletPCs and PDAs. Thus,
activity-based computing allows users to carry with them, and restore, their
work on heterogeneous devices in a pervasive computing environment. Central
to this is clearly that users need to be authenticated on every device they want
to use, and easy login is hence a core challenge in the concept of activity-based
computing.

Our design is based on participatory design sessions and workshops with a
wide range of clinicians, including physicians, radiologists, surgeons, and differ-
ent types of specialized nurses. All in all 12 such workshops were conducted,
each lasting 4-6 hours having 6-10 participants each. Various aspects of design-
ing support for clinical work were discussed, including the login mechanisms.
Several user authentication mechanisms were designed, implemented, and eval-
uated in these workshops.

5.2. Context-Aware User Authentication 65

Requirements. Based on existing research within UbiComp, our studies of
medical work, and our experimental design effort with end-users, we can list
the following requirements for a user authentication mechanism in a pervasive
computing environment.

Proximity-Based Work in a hospital is characterized by busy people who are
constantly moving around, and are engaged in numerous activities in par-
allel. Easy and fast login was thus deemed a fundamental prerequisite for
the success of a distributed, pervasive computing infrastructure, embed-
ded in walls, floors, tables, beds, etc. The usability goal in our workshops
reached a point where the user should do nothing to log in. He should
simply just use the computer, and the computer would know who he was.

Secure Clinical computer systems store and handle sensitive, personal health
data for many patients. It is therefore of utmost importance that these
systems are protected from unauthorized access. Hence, pervasive com-
puter systems in a healthcare environment require secure user authentic-
ation.

Active Gesture We experimented with a login mechanism that would auto-
matically transfer a user’s on-going session to a display near him, much
like the ’Follow-me’ application using the Bat system [112]. This, however,
turned out to be a less useful design. The problem was that often a clini-
cian would enter a room, where numerous computing and display devices
would be available. For example in a radiology conference room, there
would be several wall-based displays, a wide range of desktop computers,
and an interactive table where images can be displayed and manipulated.
It was unclear from monitoring the location of the user, which of such
displays he would like to use, or whether he wanted to use a computer at
all. Therefore the authentication mechanism must be based on an active
gesture near the display or devices that the user wants to use.

Support for Logout During our experiments we discovered that the process
of logging out a user is equally important. Clinicians would often have to
hurry on, and would simply walk (or run) away from an ongoing session.
In this case, automatic logout was deemed important.

One might be surprised to find that privacy is nowhere to be found in
the requirements, but since the system will only be deployed inside a hospital
environment, there were no privacy concerns from the people participating in
the workshops. Furthermore one goal of the system already being developed is
to be able to determine the location of people inside the hospital, so e.g. the
nearest physician can be quickly located in case of an emergency.

5.2.1 Our Design

There are three key principles in our design of a context-aware user authentic-
ation mechanism. First, it uses a physical token for active gesturing and as the

66 Chapter 5. Usability and Authentication

cryptographic basis for authentication. Second, it uses a context-awareness sys-
tem to verify the location of the user, and to log out the user when he leaves the
computer(s) in a certain place. Third, it contains fall-back mechanisms, so that
if either of the two components in the system falls out, the user authentication
mechanism switches to other mechanisms. If the context-awareness infrastruc-
ture is unreachable for any reason, the user is requested to enter his password
when trying to log in. If the token cannot be accessed for any reason, the user
is requested to enter both his username and password, as usual. Hence, in case
of system failure, security is not completely compromised, and the system is
still usable. We shall return to a more detailed security analysis below.

Our current design uses smart card technology and in the rest of the paper
we will present this design based on a smart card as the physical token. Further-
more, we shall only consider the part of the authentication protocol that involves
the smart card. Standard authentication using username and password is not
further discussed. The two basic components in the context-aware user au-
thentication mechanism are (1) a secure user authentication protocol between a
computer and a smart card, and (2) a distributed computing context-awareness
infrastructure.

5.2.1.1 Authentication Protocol

The authentication protocol is running on a smart card. Each computer is
equipped with a card reader and the protocol is executed every time a user
inserts his card into the reader on the client. In order to use the card for
authentication, the following information is stored on the card:

• An id for the user the card belongs to.

• The user’s password.

• The user’s secret key (KS) and public key (KP).

When the card is issued, a program for authentication is stored on the card,
and initialized with the user’s password and the ID of the user. When the
applet is initialized, the card creates an RSA key-pair. The secret key (KS) is
stored on the card and the public key (KP) is stored in a central server along
with the ID of the user. The authentication protocol is illustrated in figure 5.1
and consists of the following steps:

1. The client receives notification that user P is in the room (optional).

2. The user places his smart card in the card reader.

3. The client requests the ID from the smart card.

4. The client looks up the person in the context server based on the ID from
the card.

5. There are two distinct cases based on the probability that the user is in
the same place as the client.
Case A: The probability is greater that a certain threshold.

5.2. Context-Aware User Authentication 67

• The smart card is asked to verify that it holds the user’s secret key,
KS .

Case B: The location of the user is not sufficiently sure.

• The computer asks the user to enter his password.

• The smart card accepts or rejects the user based on the password.

6. The user is either denied or allowed access.

Figure 5.1: Interaction Diagrams for the Authentication Protocol. Case A –
The person is in the same location as the User Authentication Client (UAC).
Case B – The person is not in the same place, and the user is requested to enter
his or her password.

In case A, where the user is known to be in the room, the client verifies
that the smart card knows the user’s secret (private) key KS by generating a
random 20 byte “nonce”, N , and sends it to the card. The card then sends back
the signature under the private key, sig (KS , N), of N , and the client uses the
corresponding public key, KP , to verify that the signature is correct.

In case B, the user is not known to be in the room. The client asks for the
user’s password, concatenates it with a 20 byte nonce N , encrypts it under the
user’s public key, E (KP , password+N), and sends it to the card. Since the
card knows the secret key, it can decrypt this message. It then compares the
received password with the one stored on the card. If they match the card re-
turns a byte R and a signature on R concatenated with N , R+sig (KS , R+N),
where R equal to 1 is accept and 0 reject. The client uses the public key, KP ,
to verify the signature.

5.2.1.2 Infrastructure

The system architecture for the context-awareness infrastructure is illustrated
in figure 5.2, and consists of the following main components:

68 Chapter 5. Usability and Authentication

Context Monitors A range of hardware and/or context data specific pro-
cesses, which register changes in the environment. Examples of context
monitors are location monitors based on monitoring RFID tags attached
to items in the environment, or WiFi monitors that try to locate WiFi-
based equipment. Other monitors might gather information about tem-
perature, planned activities in users’ personal calendars, or try to identify
people in a room based on their voices.

Context Server The context server contains a simple data structure that
stores information about entities in the environment. Entities are usu-
ally people, places, or things, but this structure is extensible and all kinds
of context data can be stored by implementing some simple interfaces.

Figure 5.2: System architecture for the context-Awareness Infrastructure.

From a client’s point of view there are basically two ways to connect to the
context server. On one hand, a client can look up an entity and ask for its
context information, like location. For example, a client can request a person
and ask for the location. On the other hand a client can register itself as a
listener to an entity, and it will hereafter receive notifications when changes to
this entity take place. For example, a client running on a stationary computer
(e.g. a wall-sized display) can register itself as listener for changes to the place
in which it is located. Whenever entities enter or leave this place, the client will
be notified.

In our authentication protocol, the context server is asked for a person’s
location. The confidence in the answer from the server can be divided into
addressing two questions:

How accurate is the location data? Whenever the context server provides
a location of an entity, it estimates the accuracy of this location. Thus, the

5.2. Context-Aware User Authentication 69

context server embeds an accuracy algorithm. In step 5 of the protocol,
the accuracy of the location estimate is compared against a configurable
threshold value.

Do we trust the location data? This is a question of whether we trust the
information that is stored in the context server. Because monitors are
the only way location data can be altered in the server, this reduces to
a question of trusting the context monitors. To prevent non-authorized
monitors to access and update the context server we require the monitors
to authenticate themselves to the server. Hence, our context-awareness
architecture supports secure authentication and access in layer B in fig-
ure 5.2 between the monitors and the server. However, there is currently
no security in layer A between the tokens and the monitors, because RFID
tags do not have processing power to support a cryptographic setup. We
shall return to the security consequences of this below.

The communication layer C between the context server and the clients is
not secure. Hence, a non-authorized client can get access to the server and read
data from it. This might be a problem from a privacy point of view, but from
a security point of view clients cannot alter location data in the context server.

5.2.2 Security Analysis

We will now take a look at the security of this system. The goal of the adversary
is to authenticate as a legitimate user. We will make the assumption that the
adversary has access to all information stored about the user, except information
stored on the smart card (the private key and the user’s password). We will
also assume that communication between the context monitors and the context
server is secure and that only legitimate context monitors can access the context
server. Finally we assume that the information stored on a smart card cannot
be read or changed except through the designed interfaces.

We also assume that the protocol between the smart card and the reader is
a secure one way authentication protocol. We have implemented this as a fairly
standard protocol from the litterature. The protocol can be shown secure using
a technique called BAN logic by Burrows, Abadi, and Needham [52].

5.2.2.1 Passive Attacks

In the passive attack scenario we assume that the adversary can monitor all
communication between the smart card and the terminal. In the case where
location data is based on a token the user has, the adversary can also monitor
all communication between that location token and the context monitor. Using
the information he acquires during this phase he will now try to impersonate
the legitimate user after having acquired the user’s smart card, both the smart
card and the location token (if one is used) or none of them. We have identified
the following passive attacks:

1. If the adversary acquires the smart card and is able to fake the location
of the legitimate user (by stealing the location token or cheating other

70 Chapter 5. Usability and Authentication

devices used to establish the location of the user) he can authenticate as
the legitimate user since to all parts of the system he is that user.

2. If he acquires only the smart card he can authenticate as the legitimate
user only in the location where the user is actually present.

3. If the user is not present he cannot authenticate as that user even though
he has the smart card, unless he also knows the user’s password.

5.2.2.2 Active Attacks

Where the passive adversary could only look at messages between the location
token and the context monitor and the smart card and the terminal, the active
adversary can drop, change, inject or completely replace any of these messages.
He can also create his own smart card using the information he obtains. The
goal is the same, though: After having done this for as long as he wants he will
now try to impersonate the legitimate user. We have identified the following
active attacks:

1. The adversary can retransmit the ”I’m here”message from a location token
to a context monitor or he can trick some other part of the location system
to make the context server believe that the legitimate user is present. If
the adversary has the smart card he can now authenticate as the legitimate
user.

2. The adversary can perform a proxy attack where the adversary tricks the
user into using a fake terminal. This allows the adversary to read his
password or to perform a man-in-the-middle attack where he can authen-
ticate as the legitimate user without having the user’s smart card. This
requires that both the user and the adversary is running the same version
of the protocol.

If they are both running the protocol from case A, the adversary simply
forwards N to the legitimate user’s card, which will return a signature
on that value, and the adversary can now send this to the real terminal.
The adversary is hereby granted access in the name of the legitimate user.
Figure 5.3 illustrates this attack.

If we are in case B, this is a bit trickier since the adversary must know the
correct password in order to succeed. This is because the nonce the real
terminal sends is combined with the password and encrypted. In order
for this attack to work, the smart card has to sign the nonce the real
terminal sent, which means that it must also accept the password entered
on the real terminal by the adversary. However this is not a problem for
the adversary since the fake terminal can also read the user’s password.
This attack is also illustrated in Figure 5.3.

5.2.2.3 Summary

It is possible for the adversary to authenticate as a legitimate user by doing one
of the following:

5.2. Context-Aware User Authentication 71

Figure 5.3: Proxy attack where an adversary has put in a fake smart card
terminal to be used by an ignorant user.

1. Steal the smart card and fake the location of a legitimate user by

(a) Replay the ”I’m here” message from a location token

(b) Trick other parts of the location system in various ways

2. Steal the smart card and be in the same room as the legitimate user.

3. Steal the smart card and acquire the user’s password somehow.

4. Perform one of the two proxy attacks.

We realize that the real weakness in this protocol is the location data. If
that can be faked, all you need is to acquire the smart card of a legitimate
user, but without knowing the details on how location data is obtained you
can not do a thorough security analysis of that problem. If location data is
only based on some token the user has, it can be stolen, if such a location
token does not use some kind of cryptography it is vulnerable to a reply attack,
if you use voice recognition it might be fooled by a recording of the user’s
voice, etc. The proxy attacks are bad as well, but require more resources and
knowledge to succeed and there are ways to prevent them such as distance
bounding protocols [47,108].

5.2.3 Implementation

Our current implementation consists of five parts:

• An installer.

• The authentication applet.

• A rough prototype of a personal pen

72 Chapter 5. Usability and Authentication

• The context server and monitors

• A client that runs the authentication protocol.

The installer installs the applet on the card with the help of IBM JCOP
tools [119]. Then it retrieves the public key from the card, and stores it as a
key-value pair on the person object in the context server. In our current imple-
mentation, the authentication applet uses 512 bit RSA keys. This can easily be
changed since the cards also support 1024 and 2048 bit keys. Encryption is done
in PKCS#1 mode and signatures are made by taking a SHA1 hash of the data
to be signed and then this hash is encrypted with the private key in PKCS#1
mode. We run the applet on the dual-interface OpenPlatform compliant Ja-
vaCard designed by IBM, which supports both contact-based and contactless
connections to the card reader. We use Philips Semiconductors’ MIFARE PRO
contactless readers as well as standard OpenPlatform Smart Card readers in
e.g. keyboards.

Our current design of the personal pen is just to glue a JavaCard to a
Mimio Pen, which is used for authentication when using a wall display. This
form factor is not particularly appealing, but it is hard to change the form and
size of the card, because the antenna is embedded in the plastic that surrounds
the chip itself. However, the size of the chip in these cards does not prevent
it from being embedded in a pen at the factory. Our ideal hardware design
would be a smart card chip embedded in a pen, and the reader embedded in
the touch-sensitive layer on a display. Putting the tip of the pen at the display
would then correspond to inserting a card in a card reader. In this way we
would be able to authenticate the user every time he is doing anything on the
display. The User Authentication Client runs as a part of the Activity-Based
Computing infrastructure, and it simply waits for a card to be inserted in the
reader, and then runs the protocol.

As for the context server, we have currently implemented the two monitors
shown in figure 5.2. The WLAN monitor monitors the WLAN base station
infrastructure in our lab and can tell the cell-based location of IEEE 802.11b
networked devices. Various types of RFID monitors can monitor passive RFID
tags in the environment. We currently use the portal antennas to determine
the location of persons equipped with RFID tags.

The current implementation of the Accuracy Algorithm is very simple. It
reduces the accuracy of the location estimate by 1% every minute. Thus, if
a person has passed a portal 10 minutes ago, he is in this location with a
probability of 90%. The User Authentication Client is also considered a trusted
monitor (we call it a login monitor) and can hence reveal the user’s location
every time he logs in. The secure authentication of monitors has not been
implemented using proper cryptograpic protocols. However, since monitors run
on standard PCs there are already well-known ways of doing this using e.g. a
PKI setup over secure IP. Hence, this was not necessary in order to make a
proof-of-concept.

5.3. The All-Or-Nothing Anti-Theft Policy 73

5.3 The All-Or-Nothing Anti-Theft Policy

In this section we present a security policy we call the All-Or-Nothing security
policy, which may help remedy the problem of theft of pervasive computing
devices. We describe how this policy can be realized, provide sample applica-
tions and documentation that indicate that our solution is realizable on commer-
cial pervasive computing platforms such as cell phones or even smaller devices.
A benefit of this policy is that it also provides distribution of cryptographic key
material, based on which a security architecture for providing confidentiality or
authenticity can be leveraged.

We would like to point out that we focus on key distribution and anti-theft
in a network of devices belonging to a single user. Clearly there are many other
issues related to this area such as usability, thorough performance evaluation,
configuration of devices, management of the network, etc. While we do touch
upon some of these issues, they are not thoroughly addressed here.

The starting point of our work, is the vision of pervasive computing de-
scribed earlier, where people will be surrounded by devices with embedded
computers. Pervasive computing devices owned by a particular person will
often have (at least) three interesting properties related to our work in this
section: 1) they are the target of theft, 2) they have embedded computers, and
3) there are many devices owned by the same person.

5.3.1 Resurrecting Duckling

The overall security policy is modelled after the resurrecting duckling security
policy model [179], so we start by briefly reviewing this. The resurrecting
duckling security policy model, as described by Stajano and Anderson, consists
of four principles:

State Any device is always in one of two states: imprintable or imprinted.

Imprinting An imprintable device is enrolled into a system by receiving some
secret. The exchange of this secret is sometimes referred to as a secure
transient association [16].

Death The process of going from being imprinted to being imprintable. This
is typically, but not necessarily, initiated by the entity (device or human)
that imprinted the device.

Assassination Death can only be performed by authorized entities, and as-
sassinating a device, that is an unauthorized change from imprinted to
imprintable, should be ”hard”.

The basic idea is that the producer produces devices in the imprintable state.
The end-user will purchase the device in this state and when connecting it to
his existing equipment, the device will be imprinted. When the user no longer
wishes to use a devices (e.g. when it is resold), death will be performed and the
device will once again be imprintable. Finally, it must be hard to assassinate
imprinted devices, meaning it must be hard to invoke death in an unauthorized

74 Chapter 5. Usability and Authentication

manner. We note that the definition of ”hard” in this context is very informal,
since the meaning is just that it should cost more resources in terms of time
and money, than what the device we are trying to protect is worth.

In the work by Stajano and Anderson [179] imprinting is always done by one
device, the mother duck. This imprinting, or pre-authentication [16], is crucial
to the realized security of the system, as cryptographic keys are exchanged in
this phase. Thus great care should be put into this phase, both from a technical
security as well as a usability perspective.

5.3.2 Basic Principle

Our overall idea is to use the embedded computers to cryptographically chain
many devices owned by the same person together in a manner which forces a
thief to steal all of the devices belonging to a particular person, if the thief is
to get the desired functionality from these devices.

What this basically means is that a user will enrol all of his devices into a
network of friendly devices, and any device on this network will only operate
with full functionality if it can ”see”all (or sufficiently many) of the other devices
in the network. This leads us to the governing principle of our security policy:

• All-Or-Nothing: It must be ”sufficiently” hard to use stolen equipment
in any other configuration than the one it was in when stolen.

Of course, a thief succeeding in stealing all of the devices in a network will
have stolen a network of fully functional devices. But, according to the All-Or-
Nothing principle the thief cannot (well, it is hard) de-compose the network or
remove devices from it. If the thief is to be successful he must steal all devices
and keep them together, even when he fences them off to some ”customer” who
in turn must also keep all the devices together to keep them operational.

This can lead to two different kinds of theft prevention: We either believe
that it may be possible to steal all devices in which case focus must be on
detecting and recovering from theft, alternatively it might only be (realistically)
possible for a thief to steal some, but not all, devices in which case focus must be
on detect/recover. We shall go into more details on this subject in the different
application domains in Section 5.3.6.

Our second principle may seem rude, but history shows that explicit focus
must be kept on this. One example is the X-box that contained a fixed secret
key for a symmetric cryptographic algorithm (RC4) [181]. So, our second overall
principle is:

• AntiInduction: If an attacker manages to break the above property for
one device, it must still be equally hard to break another device.

That is, breaking one device does not lead to breaking an entire class of
devices. This is related to Kerckhoffs’ principle which Shannon reformulated
as ”The enemy knows the system”. We cannot assume that global secrets stay
secret forever.

5.3. The All-Or-Nothing Anti-Theft Policy 75

5.3.3 The All-Or-Nothing Security Policy

Realizing the All-Or-Nothing policy means that a device should be unable to
function properly when it is removed from its network. Of course this might
not always be desirable in a strict sense, since every device would have to be
available all the time for this to work. So, we are satisfied with just having
some subset of size t of all devices in the system available.

Now we describe our security policy as an extension of the resurrecting
duckling security policy [179]. At any given point in time we call the number
of devices in the network n.

State Each device is in one of three states:

Imprintable In this state the device is promiscuous and will associate
to any network of devices to which it is presented.

Imprinted In this state the device is part of a network of friendly devices
D1, ..., Dn.

An imprinted device will occasionally, at least when imprinting an-
other device and when performing an operation like power on, verify
the presence of the other members of the network. If it fails to verify
this presence it will move to the emergency state.

Emergency In this state the device will perform some set of applica-
tion specific actions to recover. Following these actions, the device
will either return to the imprinted or imprintable state. The lat-
ter, imprintable, state only following user authentication towards
the device, as this amounts to performing death (see below).

Imprinting The user authenticates to some device in the network which then
associates with the new device. Afterwards, the new device will automat-
ically associate with the remaining devices in the network.

Death The user authenticates to the device being killed, and the device reverts
to the imprintable state.

Assassination It must be ”sufficiently” hard to subvert a device from the
imprinted to the imprintable state, without authenticating towards the
device.

From the above we see that security mechanisms realizing this policy must
address the following issues:

• A protocol for device association in the imprinting phase.

• A protocol for presence verification.

• User authentication towards devices.

• Frequency of presence verification.

• Emergency rules.

76 Chapter 5. Usability and Authentication

We describe general application-independent protocols for device association
and presence verification, but leave some details on thresholds, user authentic-
ation, frequency of presence verification and emergency rules to the specific
applications. With respect to user authentication, this means that the user
authenticates himself towards the device in some way. Either with a PIN code
entered directly on the device, entered on a small portable keyboard that can
be attached to the device, read from a biometric scanner, etc.

Note also that a full real-life security architecture must probably also address
other attacks than theft. Standard security goals such as confidentiality, etc.
may also be of relevance. As mentioned we do not address these issues here,
but note that our solution presented is based on equipping all devices with
cryptographic keys, which can of course have many uses besides realizing the
All-Or-Nothing anti-theft policy. Note that there are various dangers of reusing
key material for different purposes, but in our case, the key exchange protocols
can just be used to exchange more key material than what is needed for anti-
theft, and use it for achieving other security goals.

5.3.4 With Symmetric Keys

Here we describe a design of the All-Or-Nothing anti theft policy, relying only
on symmetric key cryptography. The goal is not to provide a complete system
ready for deployment, but rather to show that the All-Or-Nothing anti theft
policy, can in fact be realized even on resource constrained devices.

5.3.4.1 Protocols

Device Association. The system consists of devices D1, ..., Dn and the new
device to be imprinted will be called Dm, wherem will be assigned device number
n+ 1.

Imprinting takes place in three phases: First the user transfers a master
PIN to Dm and one other device on the network. We assume without loss of
generality that this device is D1. Second, D1 and Dm establish a shared key using
a password-based key exchange protocol with PIN as the shared secret. Third,
Dm runs a protocol with the remaining devices to obtain shared keys with them.

We assume that the system is in a state where devices have shared keys
with each other, so Kij denotes the key shared by Di and Dj which of course
is similar to Kji. Furthermore, device Di stores H(PIN‖Di), where ‖ denotes
concatenation and H is a cryptographic hash function.

We make use of two primitives: authenticated ping and presence verification.
Authenticated ping is a symmetric two-way authentication protocol to allow two
devices to prove to each other that they know a shared secret key. Presence
verification is simply authenticated ping from one device to t other devices,
to verify that the device has not been removed from the system. Both are
described in more details later in this section. Whenever we say that something
is verified, we assume that the device will abort the protocol if verification fails.
The first phase is the user phase:

1. The user transfers PIN to Dm.

5.3. The All-Or-Nothing Anti-Theft Policy 77

2. The user transfers PIN to D1.

3. D1 verifies PIN using H(PIN‖D1).

The second phase is the key exchange phase. Here D1 and Dm exchange a shared
key:

1. D1 sends a random value Kr to Dm.

2. Dm sends a random value Ks to D1.

3. D1 and Dm compute K1m = H(D1‖Dm‖PIN‖Kr‖Ks).

4. D1 runs authenticated ping with Dm to verify K1m and if correct, D1 accepts
Dm as a new device in the network.

5. D1 sends EK1m(H(K1i‖Dm)) for all 2 ≤ i ≤ n to Dm.

6. Dm computes H(H(PIN‖Di)‖Dm) for all 2 ≤ i ≤ n.

7. D1 and Dm delete PIN.

The third phase is the key distribution phase, and is executed between Dm and
every other device D2, ..., Dn. Here we show the execution between D2 and Dm.
EK denotes both encryption and authentication under key K, for example by
performing encryption in GCM mode [186]:

1. Dm sends (D1, Kr) to D2, where Kr is a random value.

2. D2 sends a random value Ks is to Dm.

3. D2 and Dm compute K2m = H(D2‖Dm‖H(H(PIN‖D2)‖Dm)‖H(K12‖Dm)
‖Kr ‖Ks).

4. D2 runs authenticated ping with Dm to verify K2m and if correct, D2 accepts
Dm as a new device in the network.

5. Dm deletes H(H(PIN‖D2)‖Dm) and H(K12‖Dm).

We note that in case some devices are offline during the key distribution
phase, Dm can store the values H(K1i‖Dm) and H(H(PIN‖Di)‖Dm) until Di be-
comes available.

Presence Verification. In order to perform an important operation, a device
will require permission from t other devices, to make sure that these devices
are still around. We call this presence verification with threshold t. If t devices
are present, this is a very good indication that the device has not been removed
from the system and the operation is allowed.

Call the device that wants to perform the operation D1 and another device
in the system D2. The following protocol, authenticated ping, now takes place
between D1 and D2. The protocol is a secure two-way authentication protocol by
Bird, Gopal, Herzberg, Janson, Kutten, Molva, and Yung [30], E is a symmetric
encryption function in ECB mode using the key shared between D1 and D2 and
⊕ denotes XOR:

78 Chapter 5. Usability and Authentication

1. D1 says hello to D2.

2. D2 sends a nonce N2 to D1.

3. D1 replies with E((D1 ⊕N1)⊕ E(N2 ⊕ E(N2))), N1.

4. D2 verifies the value from Step 3.

5. D2 replies with E(N2 ⊕ E(N1)).

6. D1 verifies the value from Step 5.

After completing this protocol with t devices, D1 will assume that it has not
been removed from the system, and will continue operating normally.

5.3.4.2 Security Analysis

In this section we argue informally about the security of the scheme with regards
to an adversary A who tries to steal one device from a system of n devices, using
a threshold t for authenticated ping.

First we distinguish between corrupted devices and stolen devices. A corrup-
ted device has been tampered with in a way such that the software or hardware
running on it can no longer be trusted to perform as expected, and the ad-
versary has access to all data stored on that device. A stolen device is merely
removed from the system but will still behave according to the protocol.

We assume that A is able to eavesdrop on, or alter all communication
between devices, and corrupt at most t − 1 devices. For simplicity, we as-
sume that the adversary cannot corrupt devices during the user phase and the
key exchange phase. It does not seem realistic in a real world setting, as the
user is physically in touch with the devices at that time. The goal of the ad-
versary is to steal one of the uncorrupted devices, and make it function as if
it was still part of the network. In other words, he must be able to answer at
least t authenticated pings correctly.

We start with a list of trivial observations: If A can corrupt a device, that
device can be removed from the system and still maintain full functionality. If A
can corrupt t or more devices, there is a chance that he can answer authenticated
ping from a uncorrupted device. Finally, if A gets access to the PIN he has full
control over the system.

What the system does ensure is that short obtaining the PIN from the user,
or using brute force to guess it using data from a corrupted device, the only
feasible attacks seem to involve compromising either many devices or the device
the adversary wants to steal. The difficulty in compromising a device depends
on how many resources are spent securing the device, but even many cheap
devices, can help protect a few expensive devices in the system from theft.

Many messages in the protocol contain data combined with the identity of
some devices. While this seems to offer little or no protection, since the device
identities are known, the idea is to restrict a message to be valid only for a
certain set of devices. If this message is retransmitted to another device not in
the set, it will be dropped as the message does not match the expected value.

5.3. The All-Or-Nothing Anti-Theft Policy 79

Data Obtained from a Corrupted Device. If A corrupts a device, he
obtains H(PIN‖Di) where Di is the identity of the corrupted device. Furthermore
he learns the shared keys that this device has with every other device.

This allows him to mount a brute force attack on the PIN by trying all
possible values of PIN until one matches H(PIN‖Di). Choosing a secure PIN

and/or a slow hash function, for example by using PKCS#5, reduces the risk
of this attack. We note that in this case Di acts as a salt, making dictionary
attacks against the PIN more difficult. Also note that if A can keep a corrupted
device in the system, he gets the PIN if that device is ever used in the user
phase.

The keys shared between the corrupted device and all other devices, enables
A to answer one authenticated ping correctly from an uncorrupted device, so
as long as he does not corrupt more than t devices, this does not break the
system. He could also try to use these keys in the key distribution phase to add
his own devices to the system. Why this will fail, we return to later.

Obtaining the PIN. Besides compromising a device and mounting a brute
force attack against the PIN, there are two kinds of online attacks against the
PIN. The first one is to try to perform the key exchange with a device (Step
1-3 of the key exchange phase), trying different PINs. The opportunity for this
attack is severely limited, since he would need to mount the attack while the
new device has not yet joined the network. After that, the device forgets PIN

and is unable to perform a key exchange. The second online attack is to get
physical access to the device and try to enter the PIN pretending to be the
user. This is easily mitigated by inserting an increasing delay after each failed
attempt.

User Phase. We assume that the devices involved in this phase are not cor-
rupted, otherwise A would already have access to the PIN. In order to reduce
the likelihood of this attack, the user should always use the most secure device
to enter his PIN and only use products from respectable vendors. The value
H(PIN‖D1) just enables the device to verify PIN and provide some feedback to
the user.

Key Exchange Phase. Security of the newly generated key follows from the
key-exchange protocol based on PIN in Step 1-3. Being able to pass authentic-
ated ping in Step 4, proves to D1 that Dm was in possession of PIN, or in other
words, that it was authorized by the user to join the network.

In Step 5, D1 sends some data to Dm encrypted under the newly generated
key (hence replay attacks do not work, since both devices contribute randomness
to the key) and finally D1 does some local computation based on PIN. Nothing
here is useful to A.

Key Distribution Phase. One might wonder why the key exchange phase
and the key distribution phase are not merged into one phase. The main reason
for this is to prevent online attacks against PIN. If we only used H(PIN‖D2) in

80 Chapter 5. Usability and Authentication

this step, the adversary could try to guess PIN. This is actually an important
point. Usually PIN will be rather short (a well known producer of HiFi equip-
ment uses a four digit PIN) and while we can limit the amount of times the
user is allowed to enter it on a device, it is more difficult to limit the number
of times a device can attempt to perform key exchange. Doing so would make
the system highly vulnerable to a denial of service attack.

A passive adversary does not know H(H(PIN‖Di)‖Dm) or H(K12‖Dm), so
he does not get to know K2m. If A corrupts Dm while it still holds on to
some H(H(PIN‖Di)‖Dm) and H(K1i‖Dm) values (that is, after the key exchange
phase, but before the key distribution phase is complete), he gets nothing more
than access to one corrupted device, since those values can only be used to make
another device accept Dm, so once Dm joins the network, those values are of no
use to A. However, if Dm is revoked by the user, the adversary can use these
values to introduce a new device into the network with the same identity.

To summarize, we use H(K1i‖Dm) in the key distribution phase to prevent
online attacks against PIN, and we use H(H(PIN‖Di)‖Dm) to prevent A from
using key material from one corrupted device to add other devices to the system.
It doesn’t matter if A corrupts one of the devices between the key exchange
phase and the key distribution phase, or after the device finishes joining the
network. The end result is that he has only one more corrupted device in the
network.

Authenticated Ping. Security of authenticated ping, and therefore also
presence verification, follows from the security of the two-way authentication
protocol by Bird et al. [30].

Proxy Attack. A specific type of attack against such authentication systems
is the proxy attack, also known as the mafia fraud attack. In this attack an
adversary would steal a device and install a proxy device in the network. This
proxy device would relay communication between the network and the stolen
device over a long distance, meaning that the stolen device could always perform
a valid authenticated ping. Such attacks are usually always possible, but may
be countered by distance bounding protocols [47] which may even be realized
on resource constrained platforms [108]. While the proxy attack is devastating
in some scenarios, for theft protection it does not seem feasible. First of all
the adversary has to leave a device in the network he stole a device from and
second, he needs to be able to answer authenticated pings all the time. If the
proxy device at some point is discovered and removed, his stolen device stops
working. We will discuss the implications of this attack in the scenarios in
Section 5.3.6.

Summary. We conclude that short of obtaining the PIN the only feasible
attack seems to involve compromising either many devices or the device the
adversary wants to steal, which can be made difficult by using secure hardware.
While not all devices carry a price tag that encourages the use of secure hard-
ware, even many cheap devices, can help protect a few expensive devices in

5.3. The All-Or-Nothing Anti-Theft Policy 81

the system. For example, the coffee machine, and a couple of light bulbs and
on/off switches, can protect the expensive home entertainment system, and if
the devices are already in a network where cryptographic keys are needed, then
there is very little overhead in also using these keys for theft protection.

5.3.4.3 Implementation

The purpose of our implementation efforts was to see whether or not this idea is
realizable in practise, not to implement the full scheme. We chose to implement
authenticated ping since it is a building block used a lot, and performance-wise
none of the other protocols seem much harder to execute, so we believe it is a
good indication of the performance of the complete scheme.

We have chosen to use motes for our implementation as they represent one
of the more resource constrained platforms which might form the basis for some
of our proposed applications. So, we argue that if our solution is viable on this
platforms, it also is on more powerful ones. We use TMote Sky motes from
Moteiv which are commercially available.

The hardware was four TMote Sky, with a 16-bit 8MHz TI MSP430 CPU,
10kb of RAM, 48kb of flash memory, and a 250kbps 2.4GHz IEEE 802.15.4
wireless transceiver. They have three LEDs and two buttons, where one is the
reset button. Development was done on TinyOS 1.x which takes care of mesh
networking and communication. The programming language was NesC.

We implemented authenticated ping on the motes with a threshold of t = 2,
meaning that if one of the motes was down, or communication failed for some
reason, the ping would still succeed. Since we did not implement any key
exchange, the encryption keys were hard-coded at development time. For sym-
metric encryption we implemented the XTEA algorithm with 32 rounds. We
experimented with smaller number of rounds, but it seemed to have a negligible
impact on performance. However, to save power on battery-operated devices,
the number of rounds can be reduced since the data encrypted during authen-
ticated ping, only needs to remain secure for a short period of time. XTEA
uses 128-bit keys and 64-bit blocks, which had to be taken into account, since
the maximum number of bytes TinyOS supports in a message is 29.

When the user button was pressed, the mote would perform presence veri-
fication and the green LED would light up if it succeeded, otherwise the red
LED would light up. Since the motes can’t generate random data we used a
PRNG seeded with the mote’s address, which does not provide cryptographic
random data, but was fine enough for our proof of concept. Another problem
was related to interrupt handling on the motes which caused messages to be
dropped if two messages arrived while the mote was performing some compu-
tation. We circumvented this problem by inserting a small fixed delay between
each attempted authenticated ping, giving the previous one time to finish before
starting the next.

The binary uploaded to the mote was around 10kb, including everything
(TinyOS, our application, libraries, etc.) and used around 500 bytes of RAM
when running. Since the priority was just to get it running, there is room
for improvement. Especially the code size can be made smaller, but also the

82 Chapter 5. Usability and Authentication

RAM usage. A rough estimate is that the authenticated ping took around
10ms to perform, so for all practical purposes presence verification succeeded
immediately when the button was pressed.

5.3.5 With Public Keys

The protocol described in the previous section suffers from one significant draw-
back, namely that if the PIN is revealed, every device is corrupted. This would
not be so bad if the PIN was well protected, but entering the PIN on just one
corrupted device, would compromise the entire system. Furthermore, a hash of
the PIN is stored on every device, which makes it vulnerable to a brute force
attack. Due to usability issues, in real life implementations the PIN might be
rather short, and this might make a brute force attacks feasible.

In this section we present alternative protocols, realizing the All-Or-Nothing
security policy. However, this implementation requires slightly more computa-
tional power available on the devices, as well as a more advanced device which
will act as the ”key” to the system.

5.3.5.1 Prerequisites

We let the user be in possession of a special device, called the UserToken, which
can communicate with a device over either a physical connection, or a short-
ranged wireless technology such as RFID or IR. This token can be considered a
”key” to the system, as the user will require this device to add or remove devices
from his system. The UserToken stores the following information:

• A private/public keypair (sk , pk) for a digital signature scheme.

• A bitvector of length no less than n, where n is the number of devices in
the system, which is known by the UserToken since it has to authorize
each new device. If bi = 1 then device Di is in the network, otherwise it
is not. This vector is called the DeviceList and has a version number
called the DeviceListVersion, which is increased by one every time the
DeviceList changes. Note that there will only be a 0 in the list, when a
device is removed from the network.

• A TimeStamp that is initialized to 0 and increased by one for every use.
Whenever a device receives a TimeStamp from the UserToken, it will store
this value, and not accept any other message from the UserToken unless
the TimeStamp is larger than the last known value.

From now on we will write UT for the UserToken, DL for the DeviceList,
DLV for the DeviceListVersion, and TS for the TimeStamp.

5.3.5.2 Protocols

Again we make use of the same two primitives, authenticated ping and presence
verification, as described in the previous section. Imprinting also takes place in
the same three phases as before: First the UT generates a new random device

5.3. The All-Or-Nothing Anti-Theft Policy 83

key, which is transferred to Dm and one other device on the network. We assume
without loss of generality that this device is D1. Then D1 and Dm exchange data
that allows Dm to exchange key material with all other devices in the system.
Third, Dm runs a protocol with the remaining devices to obtain shared keys
with them.

Recall that the system consists of n devices D1, ..., Dn and the new device to
be imprinted will be called Dm where m = n+ 1.

Device Association. Let Di denote device number i. We assume that the
system is in a state where devices have shared keys with every other device,
so Kij denotes the key shared by Di and Dj which of course is similar to Kji.
Furthermore, device Di stores pk , DL, DLV and TS.

Again, when we say that something is verified, we assume that the device will
abort the protocol, and forget all data received during the protocol if verification
fails. We also assume that a device will refuse to negotiate a new key, if it already
shares a key with that device. The first phase is the user phase:

1. UT generates a random key Kt.

2. UT sends (pk ,Kt) to Dm.

3. UT updates the DL to contain Dm.

4. UT sends DLV, DL, Sigsk (DLV, DL) to Dm.

5. UT sends TS,Kt, Dm, Sigsk (D1, TS,Kt, Dm) to D1.

6. D1 verifies the signature.

The second phase is the key exchange phase, where D1 and Dm exchange a new
shared key. The DL is updated by the authenticated ping protocol, as we will
see later.

1. D1 sends a random value Kr to Dm.

2. Dm sends a random value Ks to D1.

3. D1 and Dm compute K1m = H(D1‖Dm‖Kt‖Kr‖Ks).

4. D1 runs authenticated ping with Dm to verify K1m.

5. D1 checks that Dm is in the DL.

6. D1 sends EK1m(H(K1i‖Dm)) for all 2 ≤ i ≤ n to Dm.

The third phase is the key distribution phase, and is executed between Dm and
every other device D2, ..., Dn. Here we show the execution between Dm and D2

1. Dm sends (D1, Kr) to D2, where Kr is a random value.

2. D2 sends a random value Ks is to Dm.

84 Chapter 5. Usability and Authentication

3. Both compute K2m = H(D2‖Dm‖H(K12‖Dm)‖Kr‖Ks).

4. Dm runs authenticated ping with D2 to verify K2m.

5. D2 checks that Dm is in the DL.

6. Dm forgets H(K12‖Dm).

We note that in case some devices are offline during the key distribution
phase, Dm can store the value H(K1i‖Dm) until Di becomes available. Again
EK denotes both encryption and authentication under key K.

Presence Verification. Call the device that wants to perform the operation
D1 and another device in the system D2. The following protocol, authenticated
ping, now takes place between D1 and D2:

1. D1 sends DLV1 to D2

If DLV1 > DLV2:

2. D2 requests the updated DL from D1

3. D1 sends DLV1, DL1, Sigsk (DLV1, DL1) to D2

4. D2 verifies the signature

5. D1 restarts authenticated ping with D2

else if DLV1 < DLV2:

2. D2 sends DLV2, DL2, Sigsk (DLV2, DL2) to D1

3. D1 verifies the signature

4. D1 restarts authenticated ping with D2

else:

2. D2 sends a nonce N1 to D1

3. D1 replies with E({D1 ⊕N1} ⊕ E(N0 ⊕ E(N1))), N0

4. D2 verifies the value from the previous step

5. D2 replies with E(N0 ⊕ E(N1))

6. D1 verifies the value from the previous step

The difference from the version in the previous section is that we need to
update the DL which will be interleaved with presence verification, otherwise it
is the same two-way authentication protocol.

5.3. The All-Or-Nothing Anti-Theft Policy 85

Updating the DL. When a new device is added to, or removed from, the
system, we need to make all other devices aware of this fact. This is done by
updating the DL on each device. Since the DL is generated by the UT and carries
a version number, it is easy to determine which version is the latest. The DL is
updated on the devices by the authenticated ping protocol when a new device is
added, but we also must be able to remove devices from the system. Assume we
want to remove D1 from the system, and that D2 is a device still in the system.

1. UT sends TS, Sigsk (TS, D1) to D1

2. D1 verifies the signature and becomes imprintable

3. UT removes D1 from the DL.

4. UT sends DLV, DL, Sigsk (DLV, DL) to D2

5. D2 verifies the signature

6. D2 performs authenticated ping with t > n/2

5.3.5.3 Security Analysis

The protocols here are in fact similar to those in Section 5.3.4.2. The main
difference is that there is no way to perform a brute force attack against a user
defined value such as the PIN. Lacking the PIN, we don’t have the same way
of ensuring that keys from one corrupted device are not used to add a number
of other devices to the network. However, in this case we have the DL which is
generated by the UT, so if a device does not appear on the DL it is not allowed to
join the network. This ensures that only devices authorized by the user can join
(or one other device, namely Dm, if A corrupts Dm between the key exchange
phase and the key distribution phase, but in this case the user can just remove
Dm from the network when he realizes things are not working as expected).
Furthermore it has the benefit that it is easier to keep track of devices in the
network.

This design also thwarts the attack, where A corrupts e.g. D1, and uses key
material from it to enroll Dm in the network after the real Dm has been removed
by the user for some reason. This attack worked against the protocol from
Section 5.3.4 but doesn’t work here, because the UT has to accept a device by
updating the DL, where the previous version depended on devices themselves to
announce a new device to the network.

To summarize, this protocol provides a number of benefits over the previous
version from Section 5.3.4. It does not rely on a global secret that can be guessed
based on data stored on each device, and it allows a more consistent view of
which devices belong to the network. In the previous version, devices were
added to the network whenever they contacted a device to exchange keys. In
this protocol, there is a global list of devices in the network.

86 Chapter 5. Usability and Authentication

5.3.5.4 Performance and Usability

UserToken. We envision the UT as a small device with either a very short
range radio (a few centimeters) or as a pen-like device where the tip of the pen
can touch a small area on a device, thereby creating physical contact between
them for transferring data. The UT could be equipped with only one LED
for informing the user, and two buttons. One for adding a device, and one for
revoking a device. Adding a device to the system, could be done in the following
way:

1. The user presses the add device button and the UT generates a random
key Kr. The LED lights up, and this completes Step 1 of the user phase.

2. The user touches the new device, the devices communicate and the LED
starts flashing on the UT. This completes Step 2-4 of the user phase.

3. The user touches an existing device in the system, the devices commu-
nicate, and the LED stops flashing. This completes the final steps of the
user phase.

All the remaining actions can now be completed by the system itself, without
the UT. Removing a device would work in the exact same way, except the user
would press the remove device button.

There might need to be some way of authenticating the user towards the
UT before it can be used1. This could be done by equipping the UT with a
fingerprint reader, or another forms of biometric sensor that could recognize
the user.

Backup. Of course the UT will eventually be lost, and a system should be de-
signed to be able to recover from such an event. Notice that the only thing that
would need to be backed up from the user token is the public/private keypair,
as the other data can be obtained from the devices in the system. If the UT is
equipped with some biometric reader, a physical trait of the user could be used
to initialize a PRNG and then the same keypair could be regenerated. However
one should be aware of the risks associated with depending on biometric traits
to generate key material. In other cases, a regular backup procedure (e.g. to
the user’s PC protected by a password) could be used.

Public Key Algorithm. Many devices will not have the computing power
available to fully support public key algorithms, so the protocols have been
designed in such a way that the UT generates signatures and the devices only
verify them. This allows us to use a signature scheme where signing is expens-
ive, but verification is cheap. One promising candidate is the Rabin signature
scheme [164]:

Gen Choose two random primes p, q and compute their product n = pq. The
secret key is (p, q) and the public key is n.

1In many scenarios, it probably wouldn’t be necessary. After all, people are quite used to
handle regular keys, which can be used by anyone who physically gets hold of them.

5.3. The All-Or-Nothing Anti-Theft Policy 87

Sign To sign a message m, choose a random u such that |u| ≈ 60 bits, and
compute c = H(m‖u). Check that gcd(c, n) = 1 and that c is a quadratic
residue modulo n. If this test fails, pick a new random u and try again.
Now compute x =

√
c mod n. Output the signature (x, u).

Verify To verify a signature (x, u) on a message m, check if H(m‖u) = x2 mod
n. Output accept if this holds, otherwise output reject.

Verifying the signature requires just one modular multiplication and one
evaluation of a hash function, which certainly is feasible on, for example, off
the shelf ZigBee devices.

5.3.6 Applications

In this section we study three different applications of the All-Or-Nothing anti-
theft policy. Clearly we can use both the symmetric and the public key variant
of the protocol, since the main difference to the user, is how imprinting and
management of the network is done. A general guideline could be that in
networks with many devices at home, the UT approach makes sense, whereas it
does not make much sense if a single manufacturer decides to use his own system,
that is incompatible with most other devices the user has in his possession.

In an ideal world, the user would have just one UT that is used to imprint all
his devices at home, but if the All-Or-Nothing policy is applied to other scen-
arios (as we will see in this section), we will have systems that are independent
of each other. In that case, having one UT for each system might not be the
best idea from a usability point of view, and also it might be too costly for the
manufacturer to provide such a hardware device to the user.

Since use cases for devices in the user’s home, all imprinted by the same UT

is quite straightforward, we will focus our attention on applying the policy in
other settings. Hence we do not consider the UT approach in the following.

Entertainment Systems. Theft is a huge problem, especially for high value
products such as modern entertainment systems. There exist sophisticated
burglar rings gathering intelligence on what equipment can be stolen where and
use this knowledge to obtain, on demand, whatever items their ”customers”have
on their shopping list. Such intelligence could come from insiders at stores that
sell such equipment, burglars can drive around residential areas at night with
product specific remote controls to find out where certain (types of) devices can
be found, etc.

Of course it is impossible to completely prevent theft, hence the strategy
often employed is to minimize the value of stolen equipment by maximizing
the efforts needed to get stolen equipment to function as if it was acquired
legitimately. In other words, our security goal is to make using stolen devices
as troublesome as possible, which in the context of the All-Or-Nothing policy
translates to forcing a thieve to steal and fence entire systems rather than single
devices, or to spend more resources trying to corrupt a device, than what the
device is worth.

88 Chapter 5. Usability and Authentication

Some special features of devices in such systems are that they are not mo-
bile, and they may not all have specific input devices (e.g. loudspeakers). We
shall assume that the devices have plenty of computing power (comparable to,
say, a cheap PC), are networked (i.e., communicating via a digital bus), and
that all devices are equipped with a USB-port. In some cases it may actually
be desirable to enforce that devices originate from the same manufacturer. To
achieve this all devices could be equipped with a root certificate from the pro-
ducer together with a certified public-key pair, that will be used during the
imprinting protocol. We note that this would be entirely optional.

As we have a relatively static set of non-mobile devices, we shall set the
threshold to be the total number of devices minus one, t = n − 1, such that
any device must be able to see all other devices2. Note that this threshold only
works if we assume a closed system consisting only of the home entertainment
system. If devices from other domains are also added to the system, we need
to define another threshold.

We imagine a scenario where the maker of the home entertainment system
sets up their own anti-theft solution, independent of other manufacturers. As
mentioned in the beginning of this section, that makes the UT approach less
desirable, but nevertheless it allows some manufacturers to implement such an
anti-theft solution today. Therefore we assume that user authentication will be
based on the user having a special USB PIN-pad. This will be connected to
the relevant devices when PINs are to be entered. We imagine that the user
receives this low cost unit when he purchases his first device.

The frequency of presence verification is defined so that in addition to when
doing imprinting, we perform presence verification whenever a device has been
without electricity. The reason is that a thief must unplug a device to steal it.

Finally, we define the following emergency rules. 1) If presence verification
fails the device will request user authentication to perform death. If this fails,
the device will shutdown for a period of time (this period of time should increase
for each failure), after which the device will again request user authentication to
perform death. 2) If the remaining devices reappear, the device will also require
user authentication with the same increasing shutdown period, before the device
can return to the imprinted state and normal operation can be resumed. In this
manner, all devices must be stolen simultaneously without any interruption in
the power supply if the thief is to have any functionality.

In this scenario, the proxy attack does not seem very likely as the owner
of the devices will know immediately that devices have been stolen. If some
devices have been stolen, the remaining devices should not work anymore. If
they do it is a sure sign that something is wrong. We note that even if one
device is stolen, the user can still perform death on the remaining devices and
add them to a new system.

Personal Devices. Recently Sony Ericsson released a Bluetooth watch which
can control cell phones and show information such as caller ID. Further, you

2To allow the owner to take single devices to service etc., one could perhaps work with a
threshold of t = n− 2 or t = n− 3.

5.3. The All-Or-Nothing Anti-Theft Policy 89

may configure the watch to issue an alarm if it looses connection to the cell
phone. There is good reason for such a feature as cell phones, PDAs and other
personal pervasive computing devices are often stolen or forgotten. We now
apply the All-Or-Nothing policy to such personal devices.

Devices such as cell phones or Bluetooth enabled watches cannot be assumed
to have plenty of computing power, but as our implementation experiments
show, they have sufficient power for our needs. In contrast to entertainment
systems they are highly mobile, albeit always close to a particular person and
thus close to each other. Also, we will assume that devices either have input
devices themselves or can be configured over Bluetooth from another device.

In this case we focus on a user with just a few devices (such as a watch,
a cell phone, and a PDA, n = 3) and set the threshold to t = 1. This means
that for a device to successfully perform presence verification, at least one other
device must be present. Since we are dealing with devices that have access to
a keyboard (locally or via e.g. Bluetooth) we will use the PIN version of the
protocol, since introducing an additional device to imprint just a few personal
devices would be overkill.

User authentication is done by directly entering a PIN on each device. This
is standard for devices such as cell phones and PDAs. For watches and similar,
user authentication could be done by having the user enter the PIN through,
say, the cell phone, over Bluetooth, which can then be displayed on the watch
and acknowledged through the push of a button. At first this approach may
seem insecure, but done in the privacy of your home there is little practical risk
involved: If we can make sure that the right PIN is entered, it seems unlikely
that a pickpocket will be monitoring Bluetooth traffic in your home.

In this case we choose a high frequency for presence verification, as you want
to know immediately if you have forgotten your PDA in a taxi, or if someone
has taken your cell phone from your pocket.

We define the following emergency rules: 1) If a device in the emergency
state is able to perform presence verification it returns to the imprinted state
and resumes normal operation. 2) Otherwise death must be performed by
authenticating as the user by entering the PIN. We have two alternative rules if
the user fails an authentication. Either, the device will shutdown for increased
periods of time as suggested for entertainment systems, or after a fixed number
of failures the devices will erase all data and become imprintable or locked.
The latter rule should preferably be combined with a sound back-up policy. It
might also be made more strict for devices containing sensitive information, e.g.
classified business data, in which case data could be erased immediately when
entering the emergency state.

One benefit of employing the All-Or-Nothing policy in this scenario is that
a user might not need to protect his cell phone or PDA with a PIN, i.e. having
to enter the PIN each time he desires to use the device. Since users often do not
use the PIN features in cell phone anyway (see e.g. Dourish, Grinter, Flor, and
Joseph [85]), the All-Or-Nothing might still provide better practical security
than the PIN solution.

In addition to watches, cell phones and PDAs one could of course envision
many other devices in the personal sphere which could be tied to a particular

90 Chapter 5. Usability and Authentication

individual. Jewelry with small embedded computers, etc.

Cars. Our final example is theft protection for cars. As described in [182]
there may be multiple back doors and attack opportunities for the social en-
gineer. Further, realizing the assassination principle, i.e., founding security in
a tamper resistant computing base is notoriously hard [4]. The All-Or-Nothing
policy does not specify how to deal with these issues, so we assume that key
material etc. is handled diligently and is sufficiently well protected.

Car theft protection is often referred to as immobilizers as they make the car
immobile. A widespread current technology is the Digital Signature Transpon-
der (DST) proved cryptographically insecure due to weak proprietary algorithms
and too short a key length by Bono, Green, Stubblefield, Juels, Rubin, and
Szydlo [38]. Another solution called KeeLoq which was used by Toyota, Honda,
Chrystler and Jaguar, just to mention a few, was proven insecure by Biham,
Dunkelman, Indesteege, Keller, and Preneel [29]. The solution we propose will
behave very similarly to the DST solution, but with our algorithms available
for public scrutiny.

An obvious solution would be to simply enrol the car in the network of
personal devices described above. If there is more than one user of the car, we
can extend the policy to allow for multiple users of each device.

Alternatively, and perhaps more suited to the use of most drivers, we could
root the policy in the car and the car keys. The threshold would be t = 1, i.e.,
both the car and the car key (assuming that there is only one key) must be
present. The user authentication would be done by the manufacturer, perhaps
with a possibility for the car owner choose a new PIN (and new keys) using a
special purpose devices as the one used for entertainment systems. It is worth
pointing out, that we are not interested in enrolling the car and the car keys
into a network of devices at home, since they will not be kept together.

Other that empowering the user to provide his devices with new keys, this
might come in handy if the car key is stolen and you want to make sure that
the thief cannot later steal the car as well, in which case you perform death on
the car and imprint with a new (car) key.

With respect to frequency and emergency rules, this instantiation of the
policy is a bit special. The reason is that the car key is more or less passive.
Fortunately it is not the key we wish to protect. The car will verify presence
whenever someone is attempting to turn the car on. The emergency rules are
simple, the car requires user authentication to perform death, but will automat-
ically revert to normal operation whenever presence is reestablished. In this way
the car will actually be in the emergency state much of the time (whenever the
key is not in the car).

The more politically correct would probably also argue for introducing an
alcoholometer in the car which will only confirm its presence if the driver au-
thenticates by breathing into the devices (and is not intoxicated).

Chapter 6

Batch Verification of Signatures

In this chapter we consider the suitability of public key signatures to the needs
of some pervasive communication applications.

We start by motivating why efficient verification of many signatures is im-
portant, and describe related work, in Section 6.1. In Section 6.2 we introduce
some definitions and propose methods for batch verifying an existing signature
schemes, and also propose a new signature scheme which on paper is efficient
to batch verify. Then we take a more practical approach in Section 6.3. We
generalize many of the results from Section 6.2 and implement several schemes
to verify the efficiency claims.

The results in this chapter are based on a paper presented at the Eurocrypt
2007 conference [54] as well as the full version [55], and a paper which as the
time of writing has not yet been published. [91].

6.1 Introduction

As the world moves towards pervasive computing and communication, devices
from vehicles to dog collars will soon be expected to communicate with their
environments. For example, many governments and industry consortia are cur-
rently planning for the future of intelligent cars that constantly communicate
with each other and the transportation infrastructure to prevent accidents and
to help alleviate traffic congestion [64, 175]. Raya and Hubaux suggest that
vehicles will transmit safety messages every 300ms to all other vehicles within
a minimum range of 110 meters [165], which in turn may retransmit these mes-
sages.

For such pervasive systems to work properly, there are many competing
constraints [64, 120, 165, 175]. First, there are physical limitations, such as a
limited spectrum allocation for specific types of communications and the po-
tential roaming nature of devices, that require that messages be kept very short
and (security) overhead be minimal [120]. Yet for messages to be trusted by
their recipients, they need to be authenticated in some fashion, so that entities
spreading false information can be held accountable. Thus, some short form of
authentication must be added. Third, different messages from many different
signers may need to be verified and processed quickly (e.g., every 300ms [165]).

91

92 Chapter 6. Batch Verification of Signatures

A fourth constraint in some scenarios, is that these authentications remain an-
onymous. However, not every scenario demands perfect anonymity. In some
cases users should be held accountable, but just not become publicly identifi-
able.

Generating one signature every 300ms is not a problem for current sys-
tems, but transmitting and/or verifying 100+ messages per second might pose
a problem. Using RSA signatures seems attractive as they are verified quickly,
however, one would need approximately 3000 bits to represent a signature on
a message plus the certificate (i.e., the public key and signature on that public
key) which might be too much for some applications (see Section 8.2 of [165]).
While many new schemes based on pairings can provide the same security with
significantly smaller signatures, they also take significantly more time to verify.
Thus, it is not immediately clear what the proper tradeoff between message
length and verification time is for many pervasive communication applications.
However, in some applications, there is evidence that doing a small amount
of additional computation is more advantageous than sending longer messages.
For example, Landsiedel, Wehrle, and Götz showed that for applications us-
ing Mica2 sensors transmitting data consumes significantly more battery power
than keeping the CPU active [133], and Barr and Asanović note that wire-
less transmission of just a single bit, can use more than 1000 times the energy
required for a 32 bit computation [21].

Due to the high overhead of using digital signatures, researchers have de-
veloped a number of alternative protocols designed to amortize signatures over
many packets [98,142], or to replace them with symmetric MACs [161] such as
HMAC [131]. Each approach has significant drawbacks; for example, the MAC-
based protocols use time-delayed delivery so that the necessary verification keys
are delivered after the messages arrive. This approach can be highly efficient
within a restricted setting where synchronized clocks are available, but it does
not provide other desirable features such as non-repudiation of messages (to
hold malicious users accountable) or privacy. Signature amortization requires
verifiers to obtain many packets before verifying, and is vulnerable to denial of
service. It is interesting to note that the short, undeniable signatures of Mon-
nerat and Vaudenay [147, 148] support a form of batch verification. However,
these are inappropriate for the pervasive settings we consider, since verification
is not universal and requires interaction with the signer.

Fast verification of many signatures is an interesting problem in other scen-
arios as well. Consider a scenario where a mail server receives a lot of signed
e-mails. To handle a variety of different e-mail clients on the internal network,
it is easier to let the server do signature verification and insert a message into
the body of the e-mail about who signed it. Assuming the internal network
and the mail server are secure, clients can rely on the signature being correct
without having to verify it themselves. However, the actual digital signature
can still be attached to the e-mail should a dispute about the authenticity of
the message later arise. To keep resource usage on the server to a minimum,
signature verification should be fast, but we can take advantage of the fact that
the server can buffer messages for a short period before verifying all of them.

6.1. Introduction 93

If one wants both short signatures and short verification times, it seems that
one needs to improve on the verification time of pairing based schemes, or try to
reduce the signature size of a fast signature scheme. In this chapter we take the
first approach, and investigate the known batch-verification techniques and to
what extent they are applicable to pairing based schemes, whereas for example
Gentry takes the other approach and provides a method for compressing Rabin
signatures [99]. We note that while these two techniques are not mutually
exclusive (in fact Gentry mentions that the compressed Rabin signatures can
be aggregated [99]), compressing signatures has not been the focus of our work.
We begin with an overview of batch verification history.

6.1.1 History

Batch cryptography was introduced in 1989 by Fiat [92] for a variant of RSA.
Later, in 1994, Naccache, M’Räıhi, Vaudenay, and Raphaeli [150] gave the first
efficient batch verifier for DSA signatures, however an interactive batch verifier
presented in an early version of their paper was broken by Lim and Lee [137].
In 1995 Laih and Yen proposed a new method for batch verification of DSA and
RSA signatures [132], but the RSA batch verifier was broken five years later
by Boyd and Pavlovski [40]. In 1998 Harn presented two batch verification
techniques for DSA and RSA [109, 110] but both were later broken [40, 117,
118]. The same year, Bellare, Garay, and Rabin took the first systematic look
at batch verification [23] and presented three generic methods for batching
modular exponentiations, called the random subset test, the small exponents
test and the bucket test which are similar to the ideas from [132, 150]. They
showed how to apply these methods to batch verification of DSA signatures and
also introduced a weaker form of batch verification called screening. In 2000
some attacks against different batch verification schemes, mostly ones based on
the small exponents test and related tests, were published [40]. These attacks
do not invalidate the proof of security for the small exponents test, but rather
show how the small exponents test is often used in a wrong way. However,
they also describe methods to repair some broken schemes based on this test.
In 2001 Hoshino, Masayuki, and Kobayashi [116] pointed out that the problem
discovered in [40] might not be critical for batch verification of signatures, but
when using batch verification to verify for example zero-knowledge proofs, it
would be. In 2004 Yoon, Cheon, and Kim proposed a new ID-based signature
scheme with batch verification [73], but their security proof is for aggregate
signatures and does not meet the definition of batch verification from [23]; hence
their title is somewhat misleading. Other schemes for batch verification based
on pairings were proposed [65, 192–194] but all were later broken by Cao, Lin
and Xue [63]. In 2006, a method was proposed for identifying invalid signatures
in RSA-type batch signatures [136], but Stanek [180] showed that this method
is flawed.

94 Chapter 6. Batch Verification of Signatures

6.1.2 Techniques by Bellare, Garay and Rabin

Let g generate a group of prime order. In 1998, Bellare et al. described some
tests [23], for verifying equations of the form yi = gxi for i = 1 to n, which
we will use again in our work. Obviously if one just multiplies these equations
together and checks if

∏n
i=1 yi = g

∑n
i=1 xi , it is easy to produce two pairs (x1, y1)

and (x2, y2) such that the product of them verifies correctly, but each individual
verification does not, e.g. by submitting the pairs (x1 − α, y1) and (x2 + α, y2),
for any α, instead. Let us review three fixes to this broken proposal.

Random Subset Test The first idea is to pick a random subset of these pairs
(xi, yi) and multiply them together, hoping to split up the pairs that were
specifically crafted to cancel each other out. Repeating this test ` times,
picking a new random subset every time, results in the probability of
accepting invalid pairs being 2−`.

Small Exponents Test Instead of picking a random subset every time, one
can instead choose exponents δi of (a small number of) ` bits and com-
pute

∏n
i=1 y

δi
i = g

∑n
i=1 xiδi . They also prove that this test results in the

probability of accepting a bad pair being 2−`. The size of ` is a tradeoff
between efficiency and security and hence it is difficult to give an exact
recommendation for it. It all depends on the application and how crit-
ical it is not to accept even a single invalid signature. For just a rough
check that all signatures are correct 20 bits seems reasonable. In a higher
security setting we should probably be using around 64− 80 bits.

Bucket Test Finally, a method called the bucket test is even more efficient
than the small exponents test for large values of n. The idea is to repeat
a test called the atomic bucket test m times. The atomic bucket test
works by first putting the n instances one wants to verify into M buckets
at random. This results in M new instances of the same problem, which
are then checked using the small exponents test with security parameter
m. After repeating the atomic bucket test m times, the probability of
accepting a bad pair in the original n instances is at most 2−m.

6.2 Batch Verification of Short Signatures

In this section we instantiate the general batch verification definitions of Bellare,
et al. [23] to the case of signatures from many signers, where the definitions
in [23] only considered a single signer. We also do this for a weaker notion of
batch verification called screening and show the relation of these notions to the
one of aggregate signatures. Surprisingly, for most known aggregate signature
schemes a batching algorithm is provably not obtained by aggregating many
signatures and then verifying the aggregate.

We present a batch verifier for a variant of the Waters IBS scheme [67].
(More precisely, this IBS scheme is implicitly defined by the Chatterjee-Sarkar
hierarchical IBE [67] and it can also be viewed as a generalized version of the
Boyen-Waters IBS [42] as we will discuss later.) To our knowledge, this is

6.2. Batch Verification of Short Signatures 95

the first batch verifier for a signature scheme without random oracles. Let
z be the additional security parameter required by the generalization. When
identities and messages are k bits, viewed as z chunks of k/z bits each, our
algorithm verifies n signatures using only (z+3) pairings. Individually verifying
n signatures would cost 3n pairings.

We present a new signature scheme, CHP, derived from the Camenisch and
Lysyanskaya signature scheme [58], which is secure in the random oracle model.
CHP signatures require only one-third the space of the original CL signatures –
on par with the shortest signatures known [37] –, but users may only issue one
signature per period (e.g., users might only be allowed to sign one message per
300ms). We present a batch verifier for these signatures from many different
signers that verifies n signatures using only three total pairings, instead of the
5n pairings required by n original CL signatures. Yet, our batch verifier has
the restriction that it can only batch verify signatures made during the same
period.

Often signatures and certificates need to be verified together. This happens
implicitly in IBS schemes. To achieve this functionality with CHP signatures,
we can issue signatures with CHP and certificates with the Boneh, Lynn, and
Shacham signatures [37]. Then we can batch the CHP signatures (on any mes-
sage from any signer) using a new batch verifier proposed herein; and we can
batch the BLS certificates (on any public key from the same authority) using
a known batch verifier that can batch verify n signatures from the same signer
using only two pairings.

6.2.1 Efficiency of Prior Work and our Contributions

Efficiency will be given as an abstract cost for computing different functions.
We begin by discussing prior work on RSA, DSA, and BLS signatures mostly for
single signers, and then discuss our new work on the Waters variant, CHP and
BLS signatures for many signers. Note that Lim [138] provides a number of effi-
cient methods for doing m-term exponentiations and Granger and Smart [107]
give improvements over the naive method for computing a product of pairings,
which is why we state them explicitly.

m-MultPairCostsG,H s m-term pairings
∏m
i=1 e(gi, hi) where gi ∈ G, hi ∈ H.

m-MultExpCostsG(k) s m-term exponentiations
∏m
i=1 g

ai where g ∈ G, |ai| = k.
PairCostsG,H s pairings e(gi, hi) for i = 1 . . . s, where gi ∈ G, hi ∈ H.
ExpCostsG(k) s exponentiations gai for i = 1 . . . s where g ∈ G, |ai| = k.
GroupTestCostsG Testing whether or not s elements are in the group G.
HashCostsG Hashing s values into the group G.
MultCosts s multiplications in one or more groups.

If s = 1 we will omit it. Throughout this chapter we assume that n is the
number of message/signature pairs and `b is a security parameter such that the
probability of accepting a batch that contains an invalid signature is at most
2−`b .

96 Chapter 6. Batch Verification of Signatures

RSA* is a modified version of RSA by Boyd and Pavlovski [40]. The difference
to normal RSA is that the verification equation accepts a signature σ as valid
if ασe = m for some element α ∈ Z∗m of order no more than 2, where m is the
product of two primes. The signatures are usually between 1024 − 2048 bits
and the same for the public key. A single signer batch verifier for this signature
scheme with cost n-MultExpCost2

Zm(`b) + ExpCostZm(k), where k is the number
of bits in the public exponent e, can be found in [40]. Note that verifying n
signatures by verifying each signature individually only costs ExpCostnZm(k), so
for small values of e (|e| < 2`b/3) the naive method is a faster way to verify
RSA signatures and it can also handle signatures from multiple signers. Bellare
et al. [23] present a screening algorithm for RSA that assumes distinct messages
from the same signer and costs 2n+ ExpCostZm(k).

DSA** is a modified version of DSA from [150] compatible with the small
exponents test from [40]. There are two differences to normal DSA. First there
is no reduction modulo q, so the signatures are 672 bits instead of 320 bits
and second, individual verification should check both a signature σ and −σ and
accept if one of them holds. Messages and public keys are both 160 bits long.
Using the small exponents test the cost is n-MultExpCostG(`b)+ExpCost2

G(160)+
HashCostnG+MultCost2n+1 multiplications. This method works for a single signer
only.

Waters is an IBS scheme derived from the HIBE scheme by Chatterjee and
Sarkar [67] for which we provide a batch verifier without random oracles in Sec-
tion 6.2.3. An interesting property of this scheme is that the identity does not
need to be verified separately. Identities and messages are k bits divided into z
logical chunks, each of k/z bits, where z is a security parameter, and a signature
is three group elements. The computational effort required depends on the num-
ber of messages and the security parameters. Let M = n-MultExpCostGT (`b) +

n-MultExpCost3
G(`b) + PairCost3

G,G + GroupTestCost3n
G + MultCost3 and refer to

the table below for efficiency of the scheme.

n ≤ 2z : M +2n-MultPairCostG,G + z-MultExpCost2n
G (kz) + ExpCost2n

G (`b)

n > 2z : M +z-MultPairCostG,G + ExpCost2n
G (kz + `b) + MultCostzn

The naive application of Waters to verify n signatures costs PairCost3n
G,G +

z-MultExpCost2n
G (kz)+MultCost4n. Also note that in many security applications

we do not need to transmit the identity as a separate parameter, as it is already
included in the larger protocol. For example, the identity may be the hardware
address of the network interface card.

BLS is the signature scheme by Boneh et al. [37]. We discuss batch verifi-
ers for BLS signatures based on the small exponents test. For a screening
algorithm, aggregate signatures by Boneh, Gentry, Lynn and Shacham [35] can
be used. The signature is only one group element in a bilinear group and
the same for the public key. For different signers the cost of batch verifica-
tion is n-MultPairCostG,G+n-MultExpCostG(`b)+PairCostG,G+ExpCostnGT (`b)+

6.2. Batch Verification of Short Signatures 97

GroupTestCostnG + HashCostnG, but for single signer it is n-MultExpCost2
G(`b) +

PairCost2
G,G + GroupTestCostnG + HashCostnG.

CHP is a new variant of Camenisch and Lysyanskaya signatures [58] presen-
ted in Section 6.2.4 designed specifically to enable efficient batch verification.
The signature is only one bilinear group element and the same for the public
key. Batch verification costs n-MultExpCost2

G(`b) + n-MultExpCostG(|w|+ `b) +
PairCost3

G,G + GroupTestCostnG + HashCostnG, where w is the output of a hash
function. However, the scheme has some additional restrictions.

Small Exponents and Bucket Tests. Recall the various testing techniques
covered in Section 6.1.2. Our batch verifiers in this chapter make use of the
small exponents test, but since the bucket test uses the small exponents test as
a subroutine, we note that we can also use the bucket test to further speed up
verification of many signatures.

6.2.2 Definitions

We now introduce some definitions, which we will use in the rest of this chapter.

6.2.2.1 Signature Schemes

Recall the definition of signature schemes from section 2.5. Now, we consider the
case where we want to quickly verify a set of signatures on (possibly) different
messages by (possibly) different signers. The input is {(t1,m1, σ1), . . . , (tn, mn,
σn)}, where ti specifies the verification key against which σi is purported to
be a signature on message mi. We extend the definitions of Bellare et al. [23]
to deal with multiple signers. And this is an important point that was not a
concern with only a single signer: one or more of the signers may be maliciously
colluding.

Definition 6.1 (Batch Verification of Signatures) Let τ be a security para-
meter. Suppose (Gen, Sign,Verify) is a signature scheme, k, n ∈ poly(τ), and
(pk1, sk1), . . . , (pkk, skk) are generated independently according to Gen(1τ). Let
PK = {pk1, . . . , pkk}. Then we call probabilistic Batch a batch verification
algorithm when the following conditions hold:

• If pk ti ∈ PK and Verify(pk ti ,mi, σi) = 1 for all i ∈ [1, n] then Batch((pk t1 ,
m1, σ1), . . . , (pk tn ,mn, σn)) = 1.

• If pk ti ∈ PK for all i ∈ [1, n] and Verify(pk ti ,mi, σi) = 0 for some
i ∈ [1, n], then Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) = 0 except with
probability negligible in τ , taken over the randomness of Batch.

Note that Definition 6.1 requires that signing keys be generated honestly,
but then they can be later held by an adversary. In practice, users could re-
gister their keys and prove some necessary properties of the keys at registration
time [17].

98 Chapter 6. Batch Verification of Signatures

Definition 6.2 (Screening of Signatures) Let ` be the security parameter.
Suppose (Gen,Sign, Verify) is a signature scheme, n ∈ poly(`) and (pk0, sk0)←
Gen(1`). Let Osk0(·) be an oracle that on input m outputs σ = Sign(sk0,m).
Then for all p.p.t. adversaries A, we call probabilistic Screen a screening al-
gorithm when µ(`) defined as follows is a negligible function:

Pr[(pk0, sk0)← Gen(1`), (pk1, sk1)← Gen(1`), . . . , (pkn, skn)← Gen(1`),

D ← AOsk0
(·)(pk0, (pk1, sk1), . . . , (pkn, skn)) :

Screen(D) = 1 ∧ (pk0,m, σ) ∈ D ∧ m 6∈ Q] = µ(`),

where Q is the set of queries that A made to Osk0(·) and for all (pka, b, c) ∈ D,
a ∈ {0, . . . , n}.

The above definition is generalized to the multiple-signer case from the
single-signer screening definition of Bellare et al. [23].

Interestingly, screening is the (maximum) guarantee that most aggregate
signatures offer if one were to attempt to batch verify a group of signatures by
first aggregating them together and then executing the aggregate-verification al-
gorithm. Consider the aggregate signature scheme of Boneh et al. [35] based on
the BLS signatures [37]. First, we review the BLS signatures. Let PSetup(1τ)→
(q, g,G,GT , e) To generate a key pair, choose a random sk ∈ Zq and set
pk = gsk . A signature on message m is σ = H(m)sk , where H : {0, 1}∗ → G is
a hash function. To verify signature σ on message m, one checks that e(σ, g) =
e(H(m), pk). Given a group of message-signature pairs (m1, σ1), . . . , (mn, σn)
(all purportedly from the same signer), BGLS aggregates them as A =

∏n
i=1 σi.

Then all signatures can be verified in aggregate (i.e., screened) by testing that
e(A, g) = e(

∏n
i=1H(mi), pk). This scheme is not, however, a batch verifica-

tion scheme since, for any a 6= 1 ∈ G, the two invalid message-signature pairs
P1 = (m1, a ·H(m1)sk) and P2 = (m2, a

−1 ·H(m2)sk) will verify under Defini-
tion 6.2 (as BGLS prove [35]), but will not verify under Definition 6.1. Indeed,
for some pervasive computing applications only guaranteeing screening would
be disastrous, because only P1 may be relevant information to forward to the
next entity – and it will not verify once it arrives! Also recall the e-mail scenario
from the introduction. If we only did screening on the server, a user could send
n messages with invalid signatures (to different receivers) that would screen
correctly. The sender could then later claim that he did not send one of the
messages and indeed the signature will not verify unless one can get hold of all
n messages! To be fair, batch verification is not what aggregate schemes were
designed to do, but it is a common misuse of them.

Let us make one final observation about the relationship between batch
verification and screening. Let D = {(t1,m1, σ1), . . . , (tn,mn, σn)}. We note
that while Screen(D) = 1 does not guarantee that Verify(pk ti ,mi, σi) for all i; it
does guarantee that the holder of sk ti authenticated mi. That is, for all i, the
holder of sk ti helped to create σi, which may or may not be a valid signature for
mi. Thus, a screening scheme can be employed to hold users accountable for the
messages they ”sign”in a setD such that Screen(D) = 1, but to do this the entire
set D must be recorded or retransmitted to a third party. In the authenticated

6.2. Batch Verification of Short Signatures 99

email scenario, where the mail server is verifying the signatures on emails for
many different users, releasing D (in the event of disputes) raises serious privacy
issues. One could consider releasing a non-interactive zero-knowledge proof of
knowledge of D such that Screen(D) = 1, although the naive approach will
require O(|D|) space and O(|D|) time to verify.

6.2.2.2 Batch Verifier

Let G be a group of prime order q ∈ Θ(2τ). Verification equations are repres-
ented by a generic claim X corresponding to a boolean relation of the following
form:

∏k
i=1 h

ci
i

?
= A, for k ∈ poly(τ), hi ∈ G and ci ∈ Z∗q , for each i = 1, . . . , k.

A verifier Verify for a generic claim is a probabilistic poly(τ)-time algorithm
which on input the representation 〈A, h1, . . . , hk, c1, . . . , ck〉 of a claim X, out-
puts accept if X holds and reject otherwise. Next definition describes a batch
verifier.

Definition 6.3 (Batch Verifier) Let G be a group of prime order q ∈ Θ(2τ).
For each j ∈ [1, η], where η ∈ poly(τ), let X(j) be a generic claim and let Verify
be a verifier. We define batch verifier for Verify as a probabilistic poly(τ)-time
algorithm which outputs accept if X(j) holds for all j ∈ [1, η] whereas it outputs
reject if X(j) does not hold for any j ∈ [1, η] except with negligible probability.

We now apply the small exponents test to a verification equation, and obtain
a general batch verifier.

Theorem 6.1 Let G be a group of prime order q, and let g be a generator of G.
For each j ∈ [1, η], where η ∈ poly(τ), let X(j) corresponds to a generic claim

as in Definition 6.3. For simplicity, assume that X(j) is of the form A
?
= Y (j)

where A is fixed for all j and all the input values to the claim X(j) are in
the correct groups. For any random vector ∆ = (δ1, . . . , δη) of `b bit elements

from Zq, an algorithm Batch which tests the following equation
∏η
j=1A

δj ?
=∏η

j=1 Y
(j)δj is a batch verifier that accepts an invalid batch with probability at

most 2−`b.

Proof. The proof closely follows the proof of the small exponents test by Bellare
et al. [23].

It is easy to see that if A = Y (j) holds for all j ∈ [1, η], then
∏η
j=1A

δj =∏η
j=1 Y

(j)δj holds for any random vector ∆ = (δ1, . . . , δη). We must now show

the other direction, that if A 6= Y (j) for any j ∈ [1, η], then Batch outputs accept
only with probability 2−`b . Since A and Y (j) are in G, we can write A = ga

and Y (j) = gy
(j)

for some a, y(j) ∈ Zq. The batch verification equation can

then be written as
∏η
j=1 g

a =
∏η
j=1 g

y(j) ⇒ g
∑η
j=1 a = g

∑η
j=1 y

(j)

. Now define

βj = a− y(j). Since Batch accepts it must be true that

η∑
j=1

βjδj ≡ 0 (mod q) (6.1)

100 Chapter 6. Batch Verification of Signatures

Now assume that at least one of the individual equations do not hold. We
assume without loss of generality that this is true for equation j = 1. This
means that β1 6= 0. Since q is a prime then β1 has an inverse γ1 such that
β1γ1 ≡ 1 (mod q). This and Equation 6.1 gives us

δ1 ≡ −γ1

η∑
j=2

δjβj (mod q) (6.2)

Let event E occurs if A 6= Y (1), but Batch accepts. Note that we do not
make any assumptions about the remaining values. Let ∆′ = δ2, . . . , δη denote
the last η− 1 values of ∆ and let |∆′| be the number of possible values for this
vector. Equation 6.2 says that given a fixed vector ∆′ there is exactly one value
of δ1 that will make event E happen, or in other words that the probability of
E given a randomly chosen δ1 is Pr[E|∆′] = 2−`b . So if we pick δ1 at random
and sum over all possible choices of ∆′ we get Pr[E] ≤

∑
(Pr[E|∆′] · Pr[∆′]).

Plugging in the values, we get: Pr[E] ≤
∑2`b(η−1)

i=1

(
2−`b · 2−`b(η−1)

)
= 2−`b . 2

A natural question to ask is if this batch verifier also works for composite
order groups. Unfortunately the answer is not straightforward. The reason for
requiring a prime order group, is that for the proof of the small exponents test
to go through, we need an element β1 to have an inverse in Zq, which is the
case if gcd(β1, q) = 1. If q is prime this is always the case, but what if q is
composite? If q = p1p2, where p1, p2 are primes, then this is the case except
when β1 is a multiple of p1, p2 or q. If β1 is chosen at random it is very unlikely
that an inverse does not exist, and the small exponents test will work in almost
all cases. However, this really depends on the scheme, so if one wants to apply
this method to a scheme set in a composite order group, one should examine
the proof and make sure that it still applies to the chosen scheme.

6.2.3 Batch Verification without Random Oracles

In this section, we present a method for batch verifying an identity-based sig-
nature scheme Waters. This batch verification method can execute in different
modes, optimizing for the lowest runtime. Let n be the number of certific-
ate/signature pairs, let 2k be the maximal number of users and assume that
each message is k bits long. Let z be the additional security parameter re-
quired by the Waters scheme. Furthermore assume that the k bits are divided
into z elements of k/z bits each. Then our batch verifier will verify n certi-
ficate/signature pairs with asymptotic complexity of the dominant operations
roughly MIN{(2n+ 3) , (z + 3)}.

On the practical side, we note that as z grows there is a corresponding
degradation in the concrete security of the IBS scheme (see [67] for a detailed
discussion of these tradeoffs.), but on the other hand the efficiency of the scheme
increases. Hence choosing a suitable value of z is a tradeoff. Setting z = k/32,
however, seems a reasonable choice. Suppose we use SHA256 to hash all the
messages (k = 256) and we choose the elements to be 32 bits (k/z = 32),
then roughly when n ≥ 3 batch verification becomes faster than individual

6.2. Batch Verification of Short Signatures 101

verification.

6.2.3.1 Batch Verification for Waters

We describe a batch verification algorithm for the Waters scheme [67], where the
number of pairings depends on the security parameter and not on the number of
signatures and where no random oracles are necessary. The underlying Waters
signature scheme appears only implicitly in prior work, so let us clearly explain
its origin. We begin with the observation by Boyen and Waters that an IBS
scheme is realized by the key issuing algorithm of any (fully-secure) 2-level
hierarchical identity-based encryption (HIBE) scheme [42].

In 2004, Boneh and Boyen described an efficient HIBE in the selective-ID
security model [31]. In 2005, Waters described how to modify Boneh and Boyen
identity-based encryption to make it fully-secure [189]. The difference between
these two IBEs is the way the identity is evaluated. Assume the identity is a
bit string V = v1v2 . . . vm. Instead of evaluating it as u′gV1 [31] then evaluating
it as u′

∏m
i=1 u

vi
i [189] makes the scheme fully secure. In 2005 Naccache [149],

and Chatterjee and Sarkar [66] independently showed how to generalize the
Waters IBE to optimize it for efficiency. These ideas were extended in 2006
by Chatterjee and Sarkar to Waters HIBE and the resulting HIBE was proven
secure in the standard model [67]. Finally the identity-based signature scheme
implicitly defined by Chatterjee and Sarkar’s HIBE, is what we will refer to as
Waters.

The Waters scheme and its batch verification algorithm are both consid-
erably more efficient than the non-generalized version. Indeed, the structure
imposed by the generalization [67, 149] make the Waters scheme particularly
well-suited for batch verification. We now explicitly describe the scheme we
call Waters and then show how to batch verify these signatures.

We assume that the identities and messages are both bit strings of length
k represented by z blocks of k/z bits each. (If this is not the case, then let k
be the larger bit length and then pre-pad the shorter string with zeros.) Let
PSetup(1τ)→ (q, g,G,GT , e).

Setup First choose a secret α ∈ Zq and h ∈ G and calculate A = e(g, h)α.
Then pick two random integers y′1, y

′
2 ∈ Zq and a random vector y =

(y1, . . . , yz) ∈ Zzq . The master secret key is MK = hα and the public

parameters are given as: PP = g,A, u′1 = gy
′
1 , u′2 = gy

′
2 , u1 = gy1 , . . . , uz =

gyz .
We use the notation of Chatterjee and Sarkar [67] to define the following
function. Let v = (v1, . . . , vz), where each vi is a (k/z)-bit string. For
i ∈ {1, 2}, let:

Ui(v) = u′i

z∏
j=1

u
vj
j .

Extract To create a private key for a user with identity ID = κ1, . . . , κz, select
r ∈ Zq and return KID = (hα · U1(ID)r, g−r) .

102 Chapter 6. Batch Verification of Signatures

Sign To sign a message m = m1, . . . ,mz using private key K = (K1,K2), select
s ∈ Zq and return

S =
(
K1 · U2(m)s, K2, g

−s) .
Verify To verify a signature S = (S1, S2, S3) from identity ID = κ1, . . . , κz on

message m = m1, . . . ,mz, check that:

A = e(S1, g) · e(S2, U1(ID)) · e(S3, U2(m)).

If this equation holds, output accept; otherwise output reject.

We now introduce a batch verifier for this signature scheme. The basic idea
is to adopt the small exponents test from [23] and to take advantage of the
peculiarities of pairings.

BatchVerify Suppose we want to batch verify n purported signatures. Let κij
and mi

j denote the j’th (k/z)-bit block of IDi (the identity of the i’th
signer) and Mi (the message signed by the i’th signer), respectively. Let
Si = (Si1, S

i
2, S

i
3) denote the signature from the i’th signer. First check

that all the identities have the correct length and that Si1, S
i
2, S

i
3 ∈ G for

all i. If not; output reject. Otherwise generate a vector ∆ = (δ1, . . . , δn)
where each δi is a random element of `b bits from Zq and set

P = e(
n∏
i=1

Si1
δi , g) · e(

n∏
i=1

Si2
δi , u′1) · e(

n∏
i=1

Si3
δi , u′2).

Depending on the values of z and n (c.f. below), pick and check one of
the following equations:

n∏
i=1

Aδi = P ·
n∏
i=1

e(Si2
δi ,

z∏
j=1

u
κij
j) · e(Si3

δi ,

z∏
j=1

u
mij
j)

 (6.3)

n∏
i=1

Aδi = P ·
z∏
j=1

e(
n∏
i=1

(Si2
κij · Si3

mij)δi , uj) (6.4)

Output accept if the chosen equation holds; otherwise output reject.

Let us discuss which equation should be picked. If n < 2z, use equation 6.3;
otherwise, use equation 6.4.

Theorem 6.2 The above algorithm is a batch verifier for the Waters.

Proof. Applying Theorem 6.1 to the verification equation for the Waters scheme,
we see that the following is a batch verifier for the Waters scheme:

6.2. Batch Verification of Short Signatures 103

n∏
i=1

Aδi =

n∏
i=1

(
e(Si1, g) · e(Si2, U1(IDi)) · e(Si3, U1(Mi))

)δi
= e(

n∏
i=1

Si1
δi , g) ·

n∏
i=1

e(Si2
δi , u′1

z∏
j=1

u
κij
j) ·

n∏
i=1

e(Si3
δi , u′2

z∏
j=1

u
mij
j)

= P ·
n∏
i=1

e(Si2
δi ,

z∏
j=1

u
κij
j) · e(Si3

δi ,
z∏
j=1

u
mij
j)

 (6.5)

All we need now is to show that equation 6.3 is equivalent to equation 6.4.
Since for all i, (Si1, S

i
2, S

i
3) are in the right group, we can write Si2 = gbi and

Si3 = gci for some elements bi, ci ∈ Zq. Now we rewrite the part inside the
parenthesis of equation 6.3 and get equation 6.4:

n∏
i=1

e(Si2
δi ,

z∏
j=1

u
κij
j) ·

n∏
i=1

e(Si3
δi ,

z∏
j=1

u
mij
j)

=
n∏
i=1

(
e(gbi , g

∑z
j=1 κ

i
jyj) · e(gci , g

∑z
j=1 m

i
jyj)
)δi

=
n∏
i=1

(
e(g, g)

∑z
j=1(δibiκ

i
jyj+δicim

i
jyj)
)

=

z∏
j=1

(
e(g, g)yj

∑n
i=1(δibiκ

i
j+δicim

i
j)
)

=
z∏
j=1

e(
n∏
i=1

(Si2
κij · Si3

mij)δi , uj).

2

Efficiency Note. A Waters signature consists of three group elements, but
since it is identity-based there is no public key, and we assume that the identity
is given ”for free” e.g. it could be the hardware address of the network interface
card. Hence the size of the signature that verifies both the message and the
identity depends only on the size of these group elements. We have described
the scheme in the symmetric bilinear setting e : G × G → GT because the
original scheme does not work in the asymmetric bilinear setting e : G1 ×
G2 → GT . However, by switching the order of the elements in the first pairing
and modifying the public parameters accordingly, the scheme also works in the
asymmetric bilinear setting. However, security would be under the Decisional
Co-Bilinear Diffie-Hellman assumption instead.

In the symmetric bilinear setting elements must be around 512 bits for
security comparable to 1024 bits RSA, which gives us a total signature size
of 1536 bits. In the asymmetric bilinear setting the elements S2 and S3 can
be represented using 160 bits, whereas S1 needs 512 bits. So all in all we can

104 Chapter 6. Batch Verification of Signatures

represent the signature on the message and the identity using only 832 bits.
However, it might not be efficient to test membership of the group G2, which
is needed for batch verification.

6.2.4 Faster Batch Verification with Restrictions

In this section, we present a second method for batch verifying signatures to-
gether with their accompanying certificates. We propose using the BLS signa-
ture scheme [37] for the certificates and a modified version of the CL signature
scheme [58] for signing messages. This method requires only two pairings to
verify n certificates (from the same authority) and three pairings to verify n sig-
natures (from possibly different signers). The cost for this significant efficiency
gain is some usage restrictions, although as we will discuss, these restrictions
may not be a problem for some of the applications we have in mind.

Certificates We use a batch verifier for BLS signatures from the same author-
ity as described in Section 6.2.4.1. The scheme is secure under the CDH
assumption in the random oracle model. Verifying n BLS signatures costs
n-MultExpCost2

G(`b) + PairCost2
G,G + GroupTestCostnG + HashCostnG, using

the Section 6.2.1 notation.

Signatures We describe a new signature scheme CHP with a batch verifier
in Section 6.2.4.2. The scheme is secure under the LRSW assumption
in the plain model when the size of the message space is a polynomial
and in the random oracle model when the size of the message space is
super-polynomial. We assume that there are discrete time or location
identifiers φ ∈ Φ. A user can issue at most one signature per φ (e.g.,
this might correspond to a device being allowed to broadcast at most one
message every 300ms) and only signatures from the same φ can be batch
verified together. To verify n CHP signatures, costs n-MultExpCost2

G(`b)+
n-MultExpCostG(|w| + `b) + PairCost3

G,G + GroupTestCostnG + HashCostnG,
where w is the output of a hash function.

6.2.4.1 Batch Verification of BLS Signatures

We describe a batch verifier for many signers for the Boneh et al. signatures [37]
described in Section 6.2.2, using the small exponents test [23].

Batch Verify: Given purported signatures σi from n users on distinct messages
Mi for i = 1 . . . n, first check that all public keys pk i where i ∈ [1, n] are valid,
and that σi ∈ G for all i. If not; output reject. Otherwise compute hi = H(Mi)
and generate a vector δ = (δ1, . . . , δn) where each δi is a random element of `b
bits from Zq. Check that e(

∏n
i=1 σ

δi
i , g) =

∏n
i=1 e(hi, pk i)

δi . If this equation
holds, output accept; otherwise output reject.

Theorem 6.3 The algorithm above is a batch verifier for BLS signatures.

Proof. We apply Theorem 6.1 to the verification equation for the BLS scheme,
and conclude that this is indeed a batch verifier for BLS signatures:

6.2. Batch Verification of Short Signatures 105

n∏
i=1

e(σi, g)δi =

n∏
i=1

e(hi, pk i)
δi ⇔ e(

n∏
i=1

σδii , g) =

n∏
i=1

e(hi, pk i)
δi (6.6)

2

Single Singer for BLS. However, BLS [37] previously observed that if we
have a single signer with public key v, the verification equation can be written
as e(

∏n
i=1 σ

δi
i , g) = e(

∏n
i=1 h

δi
i , v) which reduces the load to only two pairings.

Theorem 6.4 ([37]) The algorithm above is a single-signer, batch verifier for
BLS signatures.

6.2.4.2 A New Signature Scheme CHP

In this section we introduce a new signature scheme secure under the LRSW
assumption [141], which is based on the Camenisch and Lysyanskaya signa-
tures [58].

The Original CL Scheme. Recall the Camenisch and Lysyanskaya signature
scheme [58]. Let PSetup(1τ) → (q, g,G,GT , e). Choose the secret key sk =
(x, y) ∈ Z2

q at random and set X = gx and Y = gy. The public key is pk =
(X,Y). To sign a message m ∈ Z∗q , choose a random a ∈ G and compute
b = ay, c = axbxm. Output the signature (a, b, c). To verify, check whether
e(X, a) · e(X, b)m = e(g, c) and e(a, Y) = e(g, b) holds.

CHP: A version of the CL Scheme Allowing Batch Verification. Our
goal is to batch-verify CL signatures made by different signers. That is we need
to consider how to verify equations of the form e(X, a) · e(X, b)m = e(g, c) and
e(a, Y) = e(g, b). The fact that the values X, a, b, and c are different for each
signature seems to prevent efficient batch verification. Thus, we need to find a
way such that many different signers share some of these values. Obviously, X
and c need to be different. Now, depending on the application, all the signers
can use the same value a by choosing a as the output of some hash function
applied to, e.g., the current time period or location. We then note that all
signers can use the same b in principle, i.e., have all of them share the same y as
it is sufficient for each signer to hold only one secret value (i.e., sk = x). Indeed,
the only reason that the signer needs to know y is to compute b. However, it
turns out that if we define b such that loga b is not known, the signature scheme
is still secure. So, for instance, we can derive b in a similar way to a using a
second hash function. Thus, all signers will virtually sign using the same y per
time period (but a different one for each period).

We note that the idea of sharing some value between the signers in order
to efficiently perform some operation on the signatures is not new. Gentry and
Ramzan present an identity based aggregate signature scheme [100] in which
signatures can only be aggregated if all signers agree on some dummy message
that none of them have used before.

106 Chapter 6. Batch Verification of Signatures

Let us now describe the resulting scheme. Let PSetup(1τ)→ (q, g,G,GT , e).
Let φ ∈ Φ denote the current time period or location, where |Φ| is polynomial.
Let M be the message space, for now let M = {0, 1}∗. Let H1 : Φ → G,
H2 : Φ→ G, and H3 :M× Φ→ Zq be different hash functions.

Gen Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X.

Sign If this is the first call to Sign during period φ ∈ Φ, then on input message
m ∈ M, set w = H3(m||φ), a = H1(φ), b = H2(φ) and output the
signature σ = axbxw. Otherwise, abort.

Verify On input message-period pair (m,φ) and purported signature σ, compute
w = H3(m||φ), a = H1(φ) and b = H2(φ), and check that e(σ, g) =
e(a,X) · e(b,X)w. If true, output accept; otherwise output reject.

Theorem 6.5 Under the LRSW assumption in G, the CHP signature scheme
is existentially unforgeable in the random oracle model for message space M =
{0, 1}∗.

Proof. We show that if there exists a p.p.t. adversary A that succeeds with
probability ε in forging CHP signatures, then we can construct a p.p.t. adversary
B that solves the LRSW problem with probability ε · |Φ|−1 · q−1

H in the random
oracle model, where qH is the maximum number of oracle queries A makes
to H3 during any period φ ∈ Φ. Recall that |Φ| is a polynomial. Adversary
BOX,Y (·) against LRSW operates as follows on input (q, g,G,GT , e, X, Y). Let
τ be the security parameter. We assume that Φ is pre-defined. Let qH be the
maximum number of queries A makes to H3 during any period φ ∈ Φ.

1. Setup: Send the parameters (q, g,G,GT , e) to A. Choose a random w′ ∈
M and query OX,Y (w′) to obtain a LRSW instance (w′, a′, b′, c′). Choose
a random φ′ ∈ Φ. Treat H1, H2, H3 as random oracles. Allow A access to
the hash functions H1, H2, H3.

2. Key Generation: Set pk∗ = X. Output to A the key pk∗.

3. Oracle queries: B responds to A’s hash and signing queries as follows.
Choose random ri and si in Zq for each time period (except φ′). Set up
H1 and H2 such that:

H1(φi) =

{
gri if φi 6= φ′

a′ otherwise
(6.7)

and

H2(φi) =

{
gsi if φi 6= φ′

b′ otherwise
(6.8)

Pick a random j in the range [1, qH]. Choose random tl,i ∈ Zq, such that
tl,i 6= w′, for l ∈ [1, qH] and i ∈ [1, |Φ|]. Set up H3 such that:

H3(ml||φi) =

{
tl,i if φi 6= φ′ or l 6= j

w′ otherwise
(6.9)

6.2. Batch Verification of Short Signatures 107

B records m∗ := mj . Finally, set the signing query oracle such that on
the lth query involving period φi:

Osk∗(ml||φi) =


abort if φi = φ′ and l 6= j

c′ else if φi = φ′ and l = j

XriX(si)tl,i otherwise

(6.10)

4. Output: At some point A stops and outputs a purported forgery σ ∈ G
for some (ml, φi). If φi 6= φ′, B did not guess the correct period and
thus B outputs a random guess for the LRSW game. If ml = m∗ or the
CHP signature does not verify, A’s output is not a valid forgery and thus
B outputs a random guess for the LRSW game. Otherwise, B outputs
(tl,i, a

′, b′, σ) as the solution to the LRSW game.

We now analyze B’s success. If B is not forced to abort or issue a random
guess, then we note that σ = H1(φi)

xH2(φi)
x·H3(ml||φi). In this scenario φi = φ′

and tl,i 6= w′. We can substitute as σ = (a′)x(b′)x·(tl,i). Thus, we see that
(tl,i, a

′, b′, σ) is indeed a valid LRSW instance. Thus, B succeeds at LRSW
whenever A succeeds in forging CHP signatures, except when B is forced to
abort or issue a random guess. First, when simulating the signing oracle, B
is forced to abort whenever it incorrectly guesses which query to H3, during
period φ′, A will eventually query to Osk∗(·, ·). Since all outputs of H3 are
independently random, B will be forced to abort with probability at most q−1

H .
Next, provided that A issued a valid forgery, then B is only forced to issue
a random guess when it incorrectly guesses which period φ ∈ Φ that A will
choose to issue its forgery. Since, from the view of A conditioned on the event
that B has not yet aborted, all outputs of the oracles are perfectly distributed
as either random oracles (H1, H2, H3) or as a valid CHP signer (Osk∗). Thus,
this random guess is forced with probability at most |Φ|−1. Thus, if A succeeds
with ε probability, then B succeeds with probability ε · |Φ|−1 · q−1

H . 2

On Removing the Random Oracles. In the previous proof, notice that
we treated hash functions H1, H2 and H3 as independent random oracles which
were (statically) programmed in |Φ|, |Φ|, and |Φ|·|M| points, respectively, where
Φ is the set of time period identifiers andM is the signing message space. Recall
that, as before, |Φ| is restricted to be polynomial in the security parameter.
Now, for sufficiently short message spaces, e.g., ISO defined error messages, we
can replace all three random oracles in the security proof of CHP by concrete
hash functions. Suppose that given a set of pairs (x1, y1), . . . , (xk, yk), it is
possible to efficiently sample a function H : {0, 1}τ → G (where k < 2τ + 1)
from a (2τ + 1)-independent function family H such that for each H ∈ H, we
have H(xi) = yi for i = 1 to k. If such types of hash function families exist
then we could simple constrain them exactly as we programmed our random
oracles.

Fortunately, Canetti, Halevi, and Katz [61] describe a method for efficiently
constructing such a hash function family which allows to map strings to bilinear

108 Chapter 6. Batch Verification of Signatures

map elements (or to map strings to elements in another prime-order algebraic
group such as Zq). Boneh and Boyen describe another such family [31]. Any
family satisfying the constraints above will work for our purposes, where H1

and H2 map into bilinear group G and H3 maps into Zq. The construction
remains as before and the new security proof simply uses concrete functions
with constraints mirroring the points (statically) programmed in the oracles.

Lemma 6.1 Under the LRSW assumption in G, the CHP signature scheme
is existentially unforgeable in the plain model when |M| are polynomial in the
security parameter.

Batch Verification of CHP Signatures. Batch verification of n signatures
σ1, . . . , σn on messages m1, . . . ,mn for the same period φ can be done as follows.
(Recall that each signer can issue at most one signature per time period. Thus,
these n signatures are all from different signers.) Assume that user i with public
key Xi signed message mi. Set wi = H(mi||φ). First check that all public keys
Xi where i ∈ [1, n] are valid, and that σi ∈ G for all i. If not; output reject.
Otherwise pick a vector ∆ = (δi, . . . , δn) with each element being a random
`b-bit number and check that e(

∏n
i=1 σ

δi
i , g) = e(a,

∏n
i=1X

δi
i) ·e(b,

∏n
i=1X

wiδi
i).

If this equation holds, output accept; otherwise output reject.

Theorem 6.6 The algorithm above is a batch verifier for CHP signatures.

Proof. Applying Theorem 6.1 to the verification equation for the CHP scheme,
we get that this is indeed a batch verifier for CHP signatures.

n∏
i=1

e(σi, g)δi =
n∏
i=1

(e(a,Xi) · e(b,Xi)
wi)δi =

n∏
i=1

e(a,Xi)
δi ·

n∏
i=1

e(b,Xi)
wiδi

(6.11)

⇔ e(

n∏
i=1

σδii , g) = e(a,

n∏
i=1

Xδi
i) · e(b,

n∏
i=1

Xwiδi
i)

2

CHP Without Batch Verification. So far we have described CHP only as
an efficient signature scheme to batch verify, but for completeness we note that
if we are not interested in batch verification, CHP is still a fairly efficient regular
signature scheme without any restrictions.

Gen Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X.

Sign Generate a value φ ∈ Φ that has never been used by the signer before.
Then on input message m ∈M, set w = H3(m||φ), a = H1(φ), b = H2(φ),
σ = axbxw and output the signature (σ, φ).

6.3. Practical Short Signature Batch Verification 109

Verify On input message m and purported signature (σ, φ), compute w =
H3(m||φ), a = H1(φ) and b = H2(φ), and check that e(σ, g) = e(abw, X).
If true, output accept; otherwise output reject.

This is very similar to the original scheme. Note that the only change is that
φ is now generated independently from all other signers and included as part of
the signature, which makes the scheme unsuitable for batch verification (since
the probability that many signers will share the same value of φ is small).
However, now that we are only interested in individual verification, we can
rewrite the original verification equation e(σ, g) = e(a,X)·e(b,X)w as e(σ, g) =
e(abw, X) which requires only two pairings to verify. Finally note that this
variant of the verification equation does not depend on how φ was generated,
and can always be used for individual verification if needed.

Efficiency Note. First, we observe that the CHP signatures are very short,
requiring only one element in G. Since the BLS signatures also require only one
element in G, and since a public key for the CHP scheme is also only one group
element, the entire signature plus certificate could be transmitted in three G
elements. In order to get the shortest representation for these elements, we
need to use asymmetric bilinear maps e : G1 × G2 → GT , where G1 6= G2,
which will allow elements in G1 to be 160 bits and elements of G2 to be 512
bits for a security level comparable to RSA-1024. For CHP signatures we need
to hash into G1 which according to Galbraith, Paterson and Smart can be
done efficiently [96]. To summarize; using BLS and CHP we can represent the
signature plus certificate using approximately 832 bits with security comparable
to RSA-1024, compared to approximately 3072 bits for actually using RSA-
1024.

Second, suppose one uses the universal one-way hash functions described by
Canetti et al. [61] to remove the random oracles from CHP. These hash functions
require one exponentiation per constraint. In our case, we may require as many
as |Φ| · |M| constraints. Thus, the cost to compute the hashes may dampen
the efficiency gains of batch verification. However, our scheme will benefit
from improvements in the construction of universal one-way hash functions
with constraints.

If CHP is used as a signatures scheme without an efficient batch verifier, the
signature require one group element in G and one element in Φ where the size of
Φ only needs to be large enough to represent the number of times a user might
want to sign with the same private key. Verification of a single CHP signature
requires two pairings.

6.3 Practical Short Signature Batch Verification

In the previous section we attempted to speed up the verification of short signa-
tures, by showing how to batch verify two short pairing-based signature schemes,
so that the total number of dominant (pairing) operations was independent of
the number of signatures to verify. However, there are still several unanswered
questions, which we will examine in this section:

110 Chapter 6. Batch Verification of Signatures

In the previous section, efficiency was stated as a rather abstract measure.
Furthermore, to reduce the total number of pairings, we had to add additional
operations, such as random number generation and small modular exponenti-
ations, so it is unclear exactly how well the scheme will actually perform in
practice.

Second, the existing theoretical literature contains many good ideas on batch
verification, but these ideas were scattered across multiple papers, and it was
not always clear how to safely employ these techniques from scheme to scheme.
In Section 6.3.1.1, we present a general framework for how to securely batch
verify a set of pairing-based equations.

Third, we present a detailed study of when and how our framework can be
applied to existing regular, identity-based, group, ring, and aggregate signature
schemes in Section 6.3.2. To our knowledge, these are the first known results
for batch verification of group and ring signatures. This is particularly exciting,
because it is the first step towards making short, privacy-friendly authentication
fast enough for deployment in real systems.

Finally we have not yet address the practical issue of what to do if batch
verification fails. How does one detect which signatures in the batch are in-
valid? Does this detection process eliminate all of the efficiency gains of batch
verification? Fortunately, our empirical studies reveal good news: Invalid sig-
natures can be detected via a recursive divide-and-conquer approach, and if
≤ 10% of the signatures are invalid, then batch verification is still more effi-
cient than individual verification. At the time we conducted these experiments,
the divide-and-conquer approach was the best method known to us thus this
is the only method studied in our section 6.3.3.2. Recently, Law and Matt
proposed three new techniques for finding invalid pairing-based signatures in a
batch [134]. In particular, one of their techniques, which is the most efficient
for large batch sizes, allows to save approximately half the time needed by the
divide-and-conquer approach. Instead, the other two proposed methods appear
to be more suitable to identify invalid signatures in small sized batches and
with a low number of bad signatures.

Overall, the conclusion of this section is that many interesting short signa-
tures can be batch verified, and that batch verification is a valuable tool for
system implementors.

6.3.1 A Framework for Pairing-Based Batch Verification

We now provide some useful observations to determine when pairing equations
can be batch verified. Theorem 6.1 tells us how to generate a secure batch
verifier from any number of pairing-based claims, but there is no guarantee that
the resulting equation will be any more efficient than just verifying each claim
independently. An efficient batch verifier (if possible) comes from optimizing
the equation we get after applying Theorem 6.1.

6.3. Practical Short Signature Batch Verification 111

6.3.1.1 Techniques to Speed Up Batch Verification

Armed with Theorem 6.1, let us back up for a moment to get a complete
picture of how to develop an efficient batch verifier. Immediately following the
summary, we will explain the details.

Framework Summary: Suppose you have η bilinear equations, to batch verify
them, do the following:

1. Apply Technique 1 to the individual verification equation, if applicable.

2. Apply Theorem 6.1 to the equations, this involves checking membership
in the expected algebraic groups and using the small exponents test.

3. Optimize the resulting equation using Techniques 2, 3 and 4.

4. If batch verification fails, use the divide-and-conquer approach to identity
the bad signatures.

Technique 1 Change the verification equation. Recall that a Σ-protocol is
a three step protocol (commit, challenge, response) allowing a prover to
prove various statements to a verifier. Using the Fiat-Shamir heuristic [93]
any Σ-protocol can be turned into a signature scheme, by forming the
challenge as the hash of the commitment and the message to be signed.
The signature is then either (commit, response) or (challenge, response).
The latter is often preferred, since the challenge is usually smaller than
the commitment, which results in a smaller signature. However, we ob-
served that this often causes batch verification to become very inefficient,
whereas using (commit, response) results in a much more suitable verific-
ation equation.

We use this technique to help batch the Hess IBS scheme [114] and the
group signatures of Boneh, Boyen, and Shacham [33]. Indeed, we believe
that prior attempts to batch verify group signatures overlooked this idea
and thus came up without efficient solutions.

Combination Step: Given η pairing-based claims, apply Theorem 6.1 to ob-
tain a single equation. The combination step actually consist of two substeps:

1. Check Membership: Check that all elements are in the correct subgroup.
Only elements that could be generated by an adversary needs to be
checked (e.g., elements of a signature one wants to verify). Public para-
meters need not be checked, or could be checked once and for all.

2. Small Exponents Test: Combine all equations into one and apply the small
exponents test.

Next, optimize this single equation using any of the following techniques in
any order.

112 Chapter 6. Batch Verification of Signatures

Technique 2 Move the exponent around. When a pairing of the form e(gi, hi)
δi

appears, move the exponent δi into e(). Since elements of G are usually
smaller than elements of GT , this gives a small speedup when computing
the exponentiation.

Replace e(gi, hi)
δi with e(gδii , hi)

Remember that it is also possible to move an exponent out of the pairing,
or move it between the two elements of the pairing. In some instances,
this allows for further optimizations depending on the implementation of
the pairing.

Technique 3 When two pairings with a common first or second element ap-
pear, they can be combined. A simple example could be the following:

Replace e(a, g) · e(b, g) with e(ab, g)

When applying the batching technique from Theorem 6.1 to verify η equa-
tions, one will often end up with an equation that can be optimized using
this technique. It will work like this:

Replace

η∏
i=1

e(gδii , h) with e(

η∏
i=1

gδii , h)

When batching η instances using Theorem 6.1 this will reduce η pairings
to one. This is also worth keeping in mind when designing schemes, or
picking schemes that one wants to batch verify. Pick a scheme so that
when e(g, h) appears in the verification equation, g or h is fixed.

In rare cases it might even be useful to apply this technique ”in reverse”,
e.g. splitting a single pairing into two pairings, to allow for more efficient
batch verification. An example is the ring signature scheme by Boyen [41]
where this is needed to apply Technique 4 below.

Technique 4 Waters hash. In his IBE, Waters described how to hash identities
to values in G1 [189], using a technique that was subsequently employed
in several signature schemes. Assume the identity is a bit string V =
v1v2 . . . vm, then given public parameters u′, u1, . . . , um ∈ G1, the hash
is u′

∏m
i=1 u

vi
i . Following works by Naccache [149] and Chatterjee and

Sarkar [66,67] documented the generalization where instead of evaluating
the identity bit by bit, divide the k bit identity bit string into z blocks,
and use the Waters hash as before. (In Section 6.3.3, we SHA1 hash our
messages to a 160-bit string, and use z = 5 as proposed in [149].) In
Section 6.2.3.1 we pointed out the following method for faster batching of
Waters hashes.

6.3. Practical Short Signature Batch Verification 113

Replace

η∏
j=1

e(gj ,

m∏
i=1

u
vij
i) with

m∏
i=1

e(

η∏
j=1

gj
vij , ui)

In this section, we apply this technique to schemes with structures related
to the Waters hash; namely, the ring signatures of Boyen [41] and the
aggregate signatures of Lu et al. [139].

Handling Invalid Signatures. If there is even a single invalid signature in the
batch, then the batch verifier will reject with high probability, but in many real
world situations a signature collection may contain invalid signatures caused
by accidental data corruption, or possibly malicious activity by an adversary
seeking to degrade service. In many cases, the ratio of invalid signatures to
valid could be quite small, and yet a standard batch verifier will reject the
entire collection.

In some cases this may not be a serious concern. For example, sensor net-
works with a high level of redundancy may choose to simply drop messages
that cannot be efficiently verified. Alternatively, systems may be able to cache
and/or individually verify important messages when batch verification fails.
However, in some applications, it might be critical to tolerate some percent-
age of invalid signatures without losing the performance advantage of batch
verification.

In this section we employ a recursive divide-and-conquer approach, similar
to that of Pastuszak, Pieprzyk, Michalek, and Seberry [159], as: First, shuffle
the incoming batch of signatures, and if batch verification fails, simply divide
the collection into two halves, and recurse on the halves. When this process ter-
minates, the batch verifier outputs the index of each invalid signature. Through
careful implementation and caching of intermediate results, much of the work of
the batch verification (i.e., computing the product of many signature elements)
can be performed once over the full signature collection, and need not be re-
peated when verifying each sub-collection. Thus, the cost of each recursion is
dominated by the number of pairings used in the batch verification algorithm.
In Section 6.3.3.2 we show that even if up to 10% of the signatures are invalid,
this technique can still be faster than individual verification.

6.3.2 Applying the Framework to Signature Schemes

Now we apply our framework to a (non-exhaustive) collection of existing regular,
identity-based, group, ring, and aggregate signature schemes. After a careful
literature search, we are presenting only the schemes with the best results (al-
though we often make a note in the particular sections about common schemes
that do not seem to batch well.) To our knowledge, our batch verifiers for the
group and ring signatures are the first proposals for batching privacy-friendly
authentication. Figure 6.1 shows a summary of our results.

114 Chapter 6. Batch Verification of Signatures

Scheme Model Individual-Verify Batch-Verify Reference

Group Signatures
BBS [33] RO 5η 2 § 6.3.2.1

ID-based Ring Signatures
CYH [75] RO 2η 2 § 6.3.2.2

Ring Signatures
Boyen [41] (same ring) plain ` · (η + 1) min{η · `+ 1, 3 · `+ 1} § 6.3.2.2

Signatures
BLS [37] RO 2η s+ 1 [37]
CHP [54] (time restrictions) RO 3η 3 6.2.4.2

ID-based Signatures
Hess [114] RO 2η 2 § 6.3.2.3
ChCh [65] RO 2η 2 [134]
Waters [42,67,149,189] plain 3η min{(2η + 3), (z + 3)} 6.2.3.1

Aggregate Signatures
BGLS [35] (same users) RO η(`+ 1) `+ 1 § 6.3.2.4
Sh [176] (same users) RO η(`+ 2) `+ 2 § 6.3.2.4
LOSSW [139] (same sequence) plain η(`+ 1) min{(η + 2), (` · k + 3)} § 6.3.2.4

Figure 6.1: Summary of signatures schemes for which our framework
applies. Let η be the number of signatures to verify, s be the number of distinct
signers involved and ` be either the size of a ring or the size of an aggregate.
Boyen batch verifier requires each signature to be issued according to the same
ring. Aggregate verifiers work for signatures related to the same set of users.
In CHP, only signatures from the same time period can be batched and z is a
(small) parameter (e.g., 8). In LOSSW, k is the message bit-length. RO stands
for random oracle.

6.3.2.1 Short Group Signatures

In this section, we show how to modify the short group signatures of Boneh,
Boyen, and Shacham (BBS) [33] in order to allow for a batch verifier which
requires only 2 pairings at the expense of an increase in the signature size.
Fortunately, however, this increase in size still keeps the signatures shorter
than their corresponding RSA-based counterparts. To our knowledge, these are
the first known results for batch verification of group signatures.

Recall that a group signature scheme allows any member to sign on behalf
of the group in such a way that anyone can verify a signature using the group
public key while nobody, but the group manager, can identify the actual signer.
A group signature scheme consists in four algorithm: Gen, Sign, Verify and
Open, that, respectively generate public and private keys for users and the
group manager, sign a message on behalf of a group, verify the signature on a
message according to the group and trace a signature to a signer.

The BBS Group Signatures. Let PSetup(1τ) → (q, g1, g2,G1,G2,GT , e),
where H : {0, 1}∗ → Zq is a hash function. Let ` be the number of users
in a group. Note that the BBS scheme requires a computable isomorphism
ψ : G2 → G1 since their definition of the SDH assumption is based on it, but

6.3. Practical Short Signature Batch Verification 115

unfortunately such an isomorphism does exist for all pairings. Fortunately,
Boneh and Boyen have proposed a cleaner definition which doesn’t require said
isomorphism [32].

Gen Select a generator g2 ∈ G2 at random and set g1 ← ψ(g2). Select h
$←

G1 \ {1G1}, r1, r2
$← Z∗q , and set u, v such that ur1 = vr2 = h. Select

γ
$← Z∗q , and set w = gγ2 . For each i = 1, . . . , n, select xi

$← Z∗q , and

set fi ← g
1

γ+xi
1 . The public key is gpk = (g1, g2, h, u, v, w), the group

manager’s secret key is gmsk = (r1, r2) and the secret key of the i’th user
is gsk[i] = (fi, xi).

Sign Given a group public key gpk = (g1, g2, h, u, v, w), a user private key (f, x)
and a message M ∈ {0, 1}∗, compute the signature σ as follows: (1)

Select α, β
$← Zq and compute T1 ← uα;T2 ← vβ;T3 ← f · hα+β. (2)

Compute γ1 ← x · α and γ2 ← x · β. (3) Select rα, rβ, rx, rγ1 , rγ2

$← Zq
and compute R1 ← urα ; R2 ← vrβ ; R3 ← e(T3, g2)rx · e(h,w)−rα−rβ ·
e(h, g2)−rγ1−rγ2 ; R4 ← T rx1 · u−rγ1 ; R5 ← T rx2 · v−rγ2 . (4) Compute c ←
H(M,T1, T2, T3, R1, R2, R3, R4, R5). (5) Compute sα ← rα + c · α; sβ ←
rβ + c · β; sx ← rx + c · x; sγ1 ← rγ1 + c · γ1; sγ2 ← rγ2 + c · γ2. The
signature is σ = (T1, T2, T3, c, sα, sβ, sx, sγ1 , sγ2).

Verify Given a group public key gpk = (g1, g2, h, u, v, w), a message M and a
group signature σ = (T1, T2, T3, c, sα, sβ, sx, sγ1 , sγ2), compute the
values R1 ← usα · T−c1 ; R2 ← vsβ · T−c2 ; R3 ← e(T3, g2)sx · e(h,w)−sα−sβ ·
e(h, g2)−sγ1−sγ2 ·

(
e(T3, w) · e(g1, g2)−1

)c
;

R4 ← T sx1 · u−sγ1 ; R5 ← T sx2 · v−sγ2 .

Accept if and only if c
?
= H(M,T1, T2, T3, R1, R2, R3, R4, R5).

An Efficient Batch Verifier for the BBS Group Signature Scheme.
Computing R3 is the most expensive part of the verification above, but at first
glance it is not clear that this can be batched, because each R3 is individually
hashed. However, as described by Technique 1, the signature and the verifica-
tion algorithm can be modified in order to efficiently apply our framework at
the expense of an increase in the signature size.

Let σ = (T1, T2, T3, R3, c, sα, sβ, sx, sγ1 , sγ2) be the new signature, and then
change the verification as follows:

NewVerify Given a group public key gpk = (g1, g2, h, u, v, w), a message M and
a group signature σ = (T1, T2, T3, R3, c, sα, sβ, sx, sγ1 , sγ2), compute the
values R1 ← usα ·T−c1 ; R2 ← vsβ ·T−c2 ; R4 ← T sx1 ·u−sγ1 ; R5 ← T sx2 ·v−sγ2 ,
then check the following pairing based equation

e(T3, g2)sx ·e(h,w)−sα−sβ ·e(h, g2)−sγ1−sγ2 ·
(
e(T3, w) · e(g1, g2)−1

)c ?
= R3.
(6.12)

Finally check if c
?
= H(M,T1, T2, T3, R1, R2, R3, R4, R5). Accept if all

checks succeed and reject otherwise.

116 Chapter 6. Batch Verification of Signatures

Now we are ready to define a batch verifier for η BBS purported group
signatures, where the main objective is to cut down on the number of pairings
required.

BBSBatchVerify Let gpk = (g1, g2, h, u, v, w) be the group public key, and let
σj = (Tj,1, Tj,2, Tj,3, Rj,3, cj , sj,α, sj,β, sj,x, sj,γ1 , sj,γ2) be the j’th signature
on the message Mj , for each j = 1, . . . , η. For each j = 1, . . . , η, compute
the following values:

Rj,1 ← usj,α · T−cjj,1 Rj,2 ← vsj,β · T−cjj,2

Rj,4 ← T
sj,x
j,1 · u

−sj,γ1 Rj,5 ← T
sj,x
j,2 · v−sj,γ2

Now for each j = 1, . . . , η, check the following:

cj
?
= H(Mj , Tj,1, Tj,2, Tj,3, Rj,1, Rj,2, Rj,3, Rj,4, Rj,5)

Then check the following single pairing based equation

e(

η∏
j=1

(T
sj,x
j,3 ·h

−sj,γ1
−sj,γ2 ·g−cj1)δj , g2)·e(

η∏
j=1

(h−sj,α−sj,β ·T c3)δj , w)
?
=

η∏
j=1

R
δj
j,3.

(6.13)
where (δ1, . . . , δη) is a random vector of `b bit elements from Zq. Accept
if and only if all checks succeed.

Theorem 6.7 For security level `b, the above algorithm is a batch verifier for
the BBS group signature scheme, where the probability of accepting an invalid
signature is 2−`b.

We show how to apply Theorem 6.1 in the following proof of Theorem 6.7.
Proofsketch. Let gpk = (g1, g2, h, u, v, w) be the group public key, and let
σj = (Tj,1, Tj,2, Tj,3, Rj,3, c, sj,α, sj,β, sj,x, sj,γ1 , sj,γ2) be the j’th signature on
the message Mj , for each j = 1, . . . , η. Since the BBS Batch Verify algorithm
performs the same tests as the New Verify algorithm for each signature separ-
ately, we just need to prove that equation 6.13 is a batch verifier for the pairing
based equation 6.12. From Theorem 6.1, for any random vector (δ1, . . . , δη) of
`b bit elements from Zq, the following pairing based equation

η∏
j=1

(e(Tj,3, g2)sj,x · e(h,w)−sj,α−sj,β · e(h, g2)−sj,γ1
−sj,γ2

·
(
e(Tj,3, w) · e(g1, g2)−1

)cj)δj ?
=

η∏
j=1

R
δj
j,3 (6.14)

is a batch verifier for the pairing based equation 6.12. It is easy to see
that equation 6.14 is equivalent to equation 6.13. Indeed, equation 6.13 is an
optimized version of equation 6.14 obtained by applying techniques 2 and 3. 2

6.3. Practical Short Signature Batch Verification 117

Performance and Signature Length. The BBS batch verifier is suitable
to verify many signatures issued by many group members on different mes-
sages. The original BBS signature consists of three elements of G1 and six
elements of Zq while its modified version, needed to construct the BBS batch
verifier, requires three elements of G1, one element of GT , and six elements of
Zq. When implemented in the 170-bit MNT curve proposed by Boneh et al.,
this results in a signature representation of approximately 2553 bits with se-
curity approximately equivalent to 1024-bit RSA. This is still shorter than the
comparable (non-pairing) scheme of Ateniese, Camenisch, Joye, and Tsudik [10]
which achieves a similar security level at a cost of at least 3872 bits.

6.3.2.2 Ring and Identity-based Ring Signatures

In this section, we show how to batch verify:

• The standard model ring signatures of Boyen (Boyen) [41] with the re-
striction that we can only batch ring signatures which have the same ring
of ` signers using ≤ 3`+ 1 pairings.
• The random oracle model, identity-based ring signatures of Chow, Yiu,

and Hui (CYH) [75], where even rings of different sizes involving different
ring members on different messages, can be batched using only 2 pairings.

Recall that a ring signature scheme allows a signer to sign a message on
behalf of a set of users which include the signer itself in such a way that a
verifier is convinced that the signer is one of the ring members, but he cannot
tell which member is the actual signer. A ring signature is a triple of algorithms
Gen, Sign and Verify, that, respectively generate public and private keys for
a user, sign a message on behalf of the ring and verify the signature on a
message according to the ring. In an identity-based ring signature, a user can
choose an arbitrary string, for example her email address, as her public key.
The corresponding private key is then created by binding such a string which
represents the user’s identity with the master key of a trusted party called
private key generator (PKG). Such a scheme consists of four algorithms: Setup,
Gen, Sign and Verify. During Setup, the PKG sets the system parameters Ppub
and chooses a master secret key msk. During Gen, the PKG gives the user
a secret key based on her identity string. Then the signing and verification
algorithms and verification algorithms operate as before, except that only Ppub
and the ring members identities are needed in place of their public keys.

The CYH batch verifier processes a bunch of signatures issued by many
different rings on many different messages by performing only two pairing eval-
uations. The CYH scheme is proven to be secure in the random oracle model.
Boyen’s batch verifier processes signatures issued by the same ring members.
Indeed, by using techniques 3 and 4, the pairing e(Si, Âi·B̂i

M ·Ĉi
ti) can be split

in the following product e(Si, Âi) · e(SMi , B̂i) · e(Stii , Ĉi). Since variables Âi, B̂i
and Ĉi assume the same value for signatures issued according to the same ring,
it is easy to see that the Boyen’s batch verifier of Figure 6.3 holds.

118 Chapter 6. Batch Verification of Signatures

Figures 6.2 and 6.3 summarizes the scheme we consider and how to batch
them, respectively.1 The CYH scheme is fairly straightforward to batch, while
the Boyen scheme required more creativity, especially in the application of tech-
niques 3 and 4.

Scheme
Setup
Key Generation

Signature Verify

CYH

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ)
H1 : {0, 1}∗ → G1

H2 : {0, 1}∗ → Z∗q
α

$← Z∗q
msk ← α
Ppub ← gα

sk ← H1(ID)α

pk ← H1(ID)

Let L = {ID1, ID2, . . . , ID`}
Let IDs be the signer
∀i ∈ [1, `] s.t. i 6= s

ui
$← G1

hi ← H2(M ||L||ui)
r

$← Zq

us ← pkrs ·

∏
i 6=s

ui · pkhii

−1
hs ← H2(M ||L||us)
S = skhs+rs

σ ← (u1, . . . , u`, S)

Let σ = (u1, . . . , u`, S)

∀i ∈ [1, `]

hi ← H2(M ||L||ui)

e(
∏̀
i=1

ui · pkhii , Ppub)
?
= e(S, g2)

Boyen

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ)
H : {0, 1}∗ → Z∗q
ψ : G2 → G1

Â0, B̂0, Ĉ0
$← G2

a, b, c
$← Z∗q

A← ga1 ; B ← gb1; C ← gc1
Â← ga2 ; B̂ ← gb2; Ĉ ← gc2
sk ← (a, b, c)

pk ← (A,B,C, Â, B̂, Ĉ)

Let L = {pk1, pk2, . . . , pk `}
where pk i = (Ai, Bi, Ci, Âi, B̂i, Ĉi)
W.l.o.g., let pk ` be the signer

s0, s1, . . . , s`−1, t0, t1, . . . , t`
$← Zq

∀i ∈ [0, `− 1], Si ← gsi1
d← 1

a`+b`·M+c`·t`

S`←

(
g ·
`−1∏
i=0

(Ai ·BMi ·C
ti
i)−si

)d
σ = (S0, . . . , S`, t0, . . . , t`)

Let σ=(S0, . . . , S`, t0, . . . , t`)

Let D = e(g1, g2)∏̀
i=0

e(Si, Âi ·B̂i
M
·Ĉi

ti
)

?
=D

Figure 6.2: Ring signature schemes that we consider. We denote by
Ppub, sk and pk the system parameters, user private key and user public key,
respectively. Moreover, we denote with pk i and sk i the public and private keys
of the i-th user in the ring. A ring signature on a message M is denoted by σ
and ` represents the ring size.

6.3.2.3 Signature and Identity-based Signature Schemes

In this section, we review the known batch verifiers for [37]:

• The short, random oracle model signatures of Boneh et al. (BLS) [37]
for signatures by the same signer, which require 2 pairings to batch. (In
Section 6.3.3, we’ll use this scheme to batch certificates.)
• The short, random oracle model signatures from Section 6.2.4.2 for sig-

natures by different signers within the same time period, which require 3
pairings to batch.

1In the course of the study about schemes suitable to apply our framework, we noticed
that the identity-based ring signature scheme proposed in [11] is a very nice candidate. Un-
fortunately, we found that, for ring size greater than two, the security proof has a flaw. After
hearing of this proof flaw, Brent Waters translated it into an attack on the scheme (personal
communication). It is still open to see if such a scheme is indeed secure for rings of size two.

6.3. Practical Short Signature Batch Verification 119

Scheme
Batch Verification Precomputation

Batch Verification Equation
Techniques

CYH

Let σj = (uj,1, . . . , uj,`, Sj) and Lj = {IDj,1, . . . , IDj,`j}; ∀i, j hj,i ← H2(Mj ||Lj ||uj,i)

e(
∏η
j=1

∏`j
i=1 pk

(hj,i+uj,i)·δj
j,i , Ppub)

2,3

Boyen

Let σj = (Sj,0, . . . , Sj,`, tj,0, . . . , tj,`), pk i ← (Ai, Bi, Ci, Âi, B̂i, Ĉi) and D = e(g1, g2)

If η < 3,
∏η
j=1

∏`
i=0 e(S

δj
j,i, Âi · B̂i

mj,i · Ĉi
tj,i

) =
∏η
j=1D

δj

Otherwise,
∏`
i=0

(
e(
∏η
j=1 S

δj
j,i, Âi)·e(

∏η
j=1 S

δj·mj,i
j,i , B̂i)·e(

∏η
j=1 S

δj·tj,i
j,i , Ĉi)

)
=
∏η
j=1D

δj

2,3,4

Figure 6.3: Batch verifier for the ring signature and ID-based ring
signature schemes we consider. Let η be the number of signatures to verify
and Mj be the message corresponding to the j’th signature σj . With pk j,i and
`j we denote the public key of the i’th ring member and the size of the ring
associated to the j’th signature, respectively. The vector (δ1, . . . , δη) in Zq is
required by the small exponents test.

• The standard model, identity-based signatures, called Waters, from Sec-
tion 6.2.3.1, which were implicitly defined by Waters [189] and then gener-
alized by subsequent works [42,67,149]. These signatures can be batched
using ≤ z+3 pairings, where z is a small security parameter (e.g., z = 5.)

We then present new results on batch verifiers, requiring only two pairings,
for:

• The random oracle model, identity-based signatures of Cha and Cheon
(ChCh) [65].

• The random oracle model, identity-based signatures of Hess (Hess) [114].

Interestingly, the identity-based signature due to Sakai, Ohgishi, and Kasa-
hara [171] is very similar to those above, and yet its subtle differences make it
a poor candidate for batching.

The BLS signature scheme is presented in Section 6.2.4.1. As also noticed
by the authors, BLS is suitable to verify a bunch of purported signatures either
issued from the same signer on different messages or by different public keys
on the same message in a faster way than simply verifying each signature sep-
arately. Indeed, consider η BLS signatures σ1, . . . , ση issued by means of the
BLS signature algorithm (see Figure 6.4) under the same public key pk on dif-
ferent messages M1. . . . ,Mη. According to the BLS verification equation (see
Figure 6.4), 2η pairing evaluations are needed to verify each equation separ-
ately, while applying techniques 2 and 3, only two pairing evaluations suffice:

e(
∏η
j=1H(Mj)

δj , pk) = e(
∏η
j=1 σ

δj
j , g2), for some vector (δ1, . . . , δη) in Zq.

A similar approach can be used to batch verify signatures issued by the same
public key with only two pairing evaluations. In Figure 6.5 we describe a more
general batch verification equation, where we consider a bunch of signatures
issued by s different signers. Applying technique 3, it is easy to see that the
pairings on the left hand side of the BLS verification equation corresponding to

120 Chapter 6. Batch Verification of Signatures

Scheme
Setup
Key Generation

Signature
Verification Precomputation

Verification Equation

BLS

(q, g1, g2,G1, G2,GT , e)← PSetup(1τ)
H : {0, 1}∗ → G
α

$← Zq
sk ← α; pk ← gα2

σ ← H(M)sk
e(H(M), pk)

?
= e(σ, g2)

CHP

Let Φ be the set of time periods.
(q, g1, g2,G1,G2,GT , e)← PSetup(1τ)
H1 : Φ→ G1, H2 : Φ→ G1

H3 : {0, 1}∗ × Φ→ Zq
α

$← Zq
sk ← α; pk ← gα2

a← H1(φ)
h← H2(φ)
b← H3(M ||φ)
σ ← ask · hsk ·b

a← H1(φ);h← H2(φ); b← H3(M ||φ)

e(σ, g2)
?
= e(a, pk) · e(h, pk)b

Figure 6.4: Signature Schemes that we consider. We denote by pk and
sk the public key and the private key of a user, respectively. We denote by σ a
signature on a message M . In CHP, φ is a time period in the set of time periods
Φ.

Scheme
Batch Verification Precomputation

Batch Verification Equation
Techniques

BLS ∏s
i=1 e(

∏ini
`=i1

H(M`)
δ` , pk i)

?
= e(

∏η
j=1 σ

δj
j , g2)

2,3

CHP

a← H1(φ);h← H2(φ); ∀j ∈ [1, η], bj ← H3(Mj ||φ)

e(
∏η
j=1 σ

δj
j , g2)

?
= e(a,

∏η
j=1 pk

δj
j) · e(h,

∏η
j=1 pk

bj ·δj
j)

2,3

Figure 6.5: Batch verifiers for the signature schemes we consider. Let
η be the number of signatures to verify. With pk j we denote the public key of
the user who issued the j’th signature. The vector (δ1, . . . , δη) in Zq is required
by the small exponents test. In BLS, s is the number of different signer and ni
is the number of signatures issued by the i’th signer (for details see the text).
In CHP, φ is a time period in the set of time periods Φ.

signatures issued by the same public key can be grouped in a single pairing. This
yields to the BLS batch verification equation of Figure 6.5, where each signer i,
for i = 1, . . . , s, is responsible of the ni out of the η signatures identified by the
indices i1, . . . , ini . The BLS batch verification equation of Figure 6.5 requires
s + 1 pairing evaluations. A similar approach can be used to quickly batch
verify signatures on m different messages with m+ 1 pairing evaluations.

The CL based scheme CHP from Section 6.2.4.2 (see Figure 6.4) allows effi-
cient batch verification of signatures made by different signers provided that all
signatures have been issued during the same period of time. Since the values g2,
a and h are the same for all signatures, from techniques 2 and 3, the CHP batch
verification equation shown in Figure 6.5 requires only three pairings, instead
of the 5η pairings required to verify η original CL signatures.

6.3. Practical Short Signature Batch Verification 121

Scheme
Setup
Key Generation

Sign
Verification Precomputation

Verification Equation

ChCh

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ)
H1 : {0, 1}∗ → G1

H2 : {0, 1}∗ ×G1 → Zq
α

$← Zq
msk ← α; Ppub ← gα2
sk ← H1(ID)α; pk ← H1(ID)

s
$← Zq

S1 ← pks

a← H2(M ||S1)
S2 ← sks+a

σ ← (S1, S2)

Let σ = (S1, S2), a← H2(M ||S1)

e(S2, g2)
?
= e(S1 · pka, Ppub)

Hess

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ)
H1 : {0, 1}∗ → G
H2 : {0, 1}∗ ×GT → Zq
α

$← Zq
msk ← α; Ppub ← gα2
sk ← H1(ID)α; pk ← H1(ID)

h
$← G

s
$← Zq

S1 ← e(h, g2)s

a← H2(M ||S1)
S2 ← ska · hs
σ ← (S1, S2)

Let σ = (S1, S2), a← H2(M ||S1)

e(S2, g2)
?
= e(pk , Ppub)

a · S1

Waters

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ)

α
$← Zq; h

$← G1

A← e(h, g2)α

y′1, y
′
2, y1, y2, . . . , yz

$← Zq
u′1 ← g

y′1
1 ; u′2 ← g

y′2
1

∀` ∈ [1, z], u` ← gy`1
û1
′ ← g

y′1
2 ; û2

′ ← g
y′2
2

∀` ∈ [1, z], û` ← gy`2
msk ← hα

Ppub ← (A, u′1, u
′
2, u1, . . . , uz,

û1
′, û2

′, û1, . . . , ûz)

r
$← Zq

k1 ← hα · (u′1 ·
∏z
i=1u

κi
i)r

k2 ← g−r1

sk ← (k1, k2)

s
$← Zq

S1 ← k1 ·(u′2 ·
z∏
i=1

umii)s

S2 ← k2
S3 ← g−s1

σ ← (S1, S2, S3)

Let σ = (S1, S2, S3) and A = e(h, g2)α

e(S1, g2)·e(S2, û1
′ ·

z∏
i=1

ûi
κi)·e(S3, û2

′ ·
z∏
i=1

ûi
mi)

?
=A

Figure 6.6: Identity-based signature schemes that we consider. We
denote by msk, Ppub, sk and pk the master key, the system parameters, user
private key and user public key, respectively. We denote by σ a signature on a
message M . In Waters, z is the number of `-bit chunks. Moreover, the identity
ID and the message M are parsed as κ1, . . . , κz and m1, . . . ,mz, respectively.

In the following we focus on batch verification for identity-based signature
schemes. An identity based signature scheme consists of four algorithms: Setup,
Key Generation, Sign and Verify. The public key generator PKG initializes the
system during the Setup phase by choosing the system parameters Ppub which
are made public. Moreover, the PKG chooses a master key msk and keeps
it secret. The master key is used in the key generation phase along with the
identity of a user to compute the user’s private key. A user can sign a message by
using the Sign algorithm. Finally, a verifier can check a signature on a message
by using the Verify algorithm on input the signature, the public parameters
and the identity of the signer. In Figure 6.6 we summarize the identity-based
signature schemes we consider.

As shown in Figure 6.7, techniques 2 and 3 allow to construct a batch verifier
which requires only two pairing evaluations for the schemes ChCh and Hess.
Both ChCh and Hess schemes are proved secure in the random oracle model.
The ChCh batch verifier of Figure 6.7 was also shown in [134]. Finally Waters
is the identity-based signature scheme secure in the standard model, derived

122 Chapter 6. Batch Verification of Signatures

Scheme
Batch Verification Precomputation

Batch Verification Equation
Techniques

ChCh

Let σj = (Sj,1, Sj,2). ∀j ∈ [1, η], aj ← H2(Mj ||Sj,1)

e(
∏η
j=1 S

δj
j,2, g2)

?
= e(

∏η
j=1(Sj,1 · pk

aj
j)δj , Ppub)

2,3

Hess

Let σj = (Sj,1, Sj,2). ∀j ∈ [1, η], aj ← H2(Mj ||Sj,1)

e(
∏η
j=1 S

δj
j,2, g2)

?
= e(

∏η
j=1 pk

aj ·δj
j , Ppub) ·

∏η
j=1 S

δj
j,1

2,3

Waters

Let σj = (Sj,1, Sj,2, Sj,3) and Ppub = (A, u′1, u
′
2, u1, . . . , uz, û1

′, û2
′, û1, . . . , ûz)

If z > 2η − 2,

e(
∏η
j=1 Sj,1, g2) ·

∏η
j=1

(
e(S

δj
j,1, û1

′∏z
i=1 ûj

kj,i) · e(S
δj
j,3, û2

′∏z
i=1 ûj

mj,i)
)

?
= A

∑η
j=1 δj

Otherwise,

e(
∏η
j=1S

δj
j,1, g2)·e(

∏η
j=1S

δj
j,2, û1

′)·e(
∏η
j=1S

δj
j,3, û2

′)·
∏z
i=1e(

∏η
j=1(S

kj,i
j,2 · S

mj,i
j,3)δj , ûi)

?
=A

∑η
j=1 δj

2,3, 4

Figure 6.7: Batch verifiers for the id-based signature schemes we con-
sider. Let η be the number of signatures to verify. With pk j we denote the
public key of the user who issued the j’th signature σj on message Mj . The vec-
tor (δ1, . . . , δη) in Zq is required by the small exponents test. In Waters, z is the
number of `-bit chunks. Moreover, the identity IDj and the message Mj cor-
responding to the j-th signature are parsed as κj,1, . . . , κj,z and mj,1, . . . ,mj,z,
respectively.

from a number of contributions [67, 149, 189], as described in Section 6.2.3.1.
As remarked in Figure 6.7, by using techniques 2, 3 and 4, Waters allows us to
define a batch verifier where the number of pairing evaluations is proportional
to the minimum between the number of signatures η and the number of chunks
z.

6.3.2.4 Aggregate Signatures

Aggregate signatures were introduced by Boneh et al. [36]. An aggregate sig-
nature is a shorter representation of n signatures provided by different users on
different messages. In particular, consider n signatures σ1, . . . , σn on messages
M1, . . . ,Mn issued by n users with public keys pk1, . . . , pkn. An aggregate sig-
nature scheme provides an aggregation algorithm, which can be run by anyone
and outputs a compressed short signature σ on input all σi, for i = 1, . . . , n.
Moreover, there is a verification algorithm that on inputs the signature σ the
public keys pk1, . . . , pkn and the messages M1, . . . ,Mn decides if σ is a valid
aggregate signature. Figure 6.8 reviews the aggregate signatures we consider.
Sh scheme [176] requires the existence of a third party named aggregator who
is responsible of aggregating signatures. LOSSW scheme [139], proved to be
secure in the standard model, is a sequential aggregate signature scheme. The
aggregate signature must be constructed sequentially, with each signer adding
its signature in turn. Figure 6.9 shows the corresponding batch verifier ob-
tained by using our framework. Following the line of Theorem 6.7 it is easy
to see that the pairing based equations in Figure 6.9 are batch verifiers for the
corresponding schemes when all aggregate signatures are issued by the same set

6.3. Practical Short Signature Batch Verification 123

of users.

In this section, we show batch verifiers for the aggregate signature scheme
by Boneh, Gentry, Lynn and Shacham (BGLS) [35] (same users) and Shao
(Shao) [176] (same users), and for the sequential aggregate scheme by Lu, Os-
trovsky, Sahai, Shacham and Waters (LOSSW) [139] (same sequence).

Scheme
Setup
Key Generation

Aggregate Signature Verification

BGLS
Same as BLS
Same as BLS

Let σi be a BLS signature on message
Mi under private key pk i
σ ←

∏`
i=1 σi

e(σ, g2)
?
=
∏`
i=1 e(H(Mi), pk i)

Sh

Same as BLS
For users and
aggregator, same
as BLS

Let σi be a BLS signature on message
Mi under private key pk i
If all BLS signatures are valid, the
aggregator use its secret key skag to
compute

σ ← H(M1|| . . . ||M`)
skag ·

∏`
i=1 σi

e(σ, g2)
?
= e(H(M1,. . .,M`), pkag)·∏̀

i=1

e(H(Mi), pk i)

LOSSW

(q, g1, g2,G1,G2,
GT , e)← PSetup(1τ)

α, y′
$← Zq

(y1, . . . , yk)
$← Zkq

y = (y1, . . . , yk)

u′ ← gy
′

1

û′ ← gy
′

2

∀i = 1, . . . , k,
ui ← gyi1
ûi ← gyi2

u=(u1, . . . , uk,
û1, . . . , ûk)
A← e(g1, g2)α

sk ← (α, y′,y)
pk ← (A, u′, û′,u)

Let σ′=(
`−1∏
i

gαi1 ·
`−1∏
i=1

(u′i

k∏
t=1

u
mi,t
i,t)r

′
,

gr
′

1) = (S′1, S
′
2) be an aggregate so far

on a set of messages {M1, . . . ,M`−1}
under public keys {pk1, . . . , pk `−1}.
Let M` be the message to sign under
public key pk ` and corresponding
secret key sk `.
We denote pk i = (Ai, u

′
i, ûi

′, ui,1, . . . ,
ui,k, ˆui,1, . . . , ˆui,k), sk i = (αi, y

′
i, yi,1,

. . . , yi,k) and Mi = mi,1, . . . ,mi,k
2.

w1 ← S′1 · gα1 · (S′2)(y
′
`+

∑k
t=1 y`,t·m`,t)

w2 ← S′2
r

$← Zq

S1←w1(u′`

k∏
t=1

u
m`,t
`,t)r

t∏
i=1

(u′i

k∏
t=1

u
mi,t
i,t)r

S2 ← w2 · gr1
σ = (S1, S2)

∏`
i=1Ai

?
=

e(S1, g2)/e(S2,
∏̀
i=1

(ûi
′
k∏
t=1

ûi,t
mi,t))

Figure 6.8: For setup, key generation and signature of BGLS and Sh see Figure
6.4. We denote by σ an aggregate signature on a set of ` messages M1, . . . ,M`.
In LOSSW a message Mi is processed as a k-bit string denoted by mi,1, . . . ,mi,k.

6.3.3 Implementation and Performance Analysis

So far we have only considered the asymptotic performance of several batch
verifiers. Unfortunately, this ”paper analysis” conceals many details that are
revealed only through empirical evaluation. Additionally, the existing work
does not address the most important practical issue facing system implementors,
namely: How a batch verifier will perform in the face of adversarial behavior
such as deliberate injection of invalid signatures.

We seek to answer these questions by conducting the first empirical invest-
igation into the feasibility of short signature batching. To conduct our experi-
ments, we built concrete implementations of seven signature schemes described
in this work, including two public key signature schemes (BLS, CHP), three

124 Chapter 6. Batch Verification of Signatures

Scheme Batch Verification Equation Techniques

BGLS e(
∏η
j=1 σ

δj
j , g2)

?
=
∏`
i=1 e(

∏η
j=1H(Mj,i)

δj , pk i) 2,3

Sh e(
∏η
j=1 σ

δj
j , g2)

?
= e(

∏η
j=1H(Mj,1, . . . ,Mj,`)

δj , pkag) ·
∏`
i=1 e(

∏η
j=1H(Mj,i), pk i) 2,3

LOSSW

Let σj = (Sj,1, Sj,2) and pk i = (Ai, u
′
i, ûi

′, ui,1, . . . , ui,k, ˆui,1, . . . , ˆui,k)

If η < ` · k + 1, e(

η∏
j=1

S
δj
j,1, g2) ·

η∏
j=1

e(S
−δj
j,2 ,

∏̀
i=1

(ûi
′
k∏
t=1

ûi,t
mj,i,t))

?
=

η∏
j=1

∏̀
i=1

A
δj
i

Otherwise,

e(

η∏
j=1

S
δj
j,1, g2)·e(

η∏
j=1

S
−δj
j,2 ,

∏̀
i=1

ûi
′)·
∏̀
i=1

k∏
t=1

e(

η∏
j=1

S
−δj·mj,i,t
j,2 , ûi,t)

?
=

η∏
j=1

∏̀
i=1

A
δj
i

2,3,4

Figure 6.9: Let η be the number of signatures to verify. The vector (δ1, . . . , δη)
in Zq is required by the small exponents test. In LOSSW a message Mj,i

provided by pk i in the j’th aggregate is processed as a k-bit string denoted
by mj,i,1, . . . ,mj,i,k.

Identity-Based Signature schemes (ChCh, Hess, Waters), a ring signature (CYH),
and a short group signature scheme (BBS). For each scheme, we measured the
performance of the standard signature verification algorithm against that of the
corresponding batch verifier. We then turned our attention to the problem of
invalid signatures, constructing a ”resilient” divide-and-conquer batch verifier
which efficiently locates invalid signatures in a batch.

Our results lead to several surprising conclusions. First, we note that
our batched Identity-Based signatures provide substantially better perform-
ance than standard (public-key) signatures, in the case where signatures are
produced by different signers. This is due to a fluke of scheme construction,
one that appears to stem from the related nature of IBS signing keys. Secondly,
we observe that the ”ideal”high-degree elliptic curve setting for short signatures
(see section below) simultaneously implies both costly individual signature veri-
fication, as well as highly-efficient batch verifiers. Finally, we gather evidence
indicating that ”resilient” batch verification appears to be practical even in the
presence of a substantial number of invalid signatures. The latter two results
provide strong evidence for the practicality of batch verification in applications
where short signatures and verification times are necessary.

Experimental Setup. To evaluate our batch verifiers, we implemented each
signature scheme in C++ using the MIRACL library for elliptic curve opera-
tions [174]. Our timed experiments were conducted on a 3.0Ghz Pentium D
930 with 4GB of RAM running Linux Kernel 2.6. All hashing was implemen-
ted using SHA1,3 and small exponents were of size 80 bits. For each scheme,
our basic experiment followed the same outline: (1) generate a collection of η

3We selected SHA1 because the digest size closely matches the order of G1. It would be
possible to use alternative hash functions with a similar digest size, e.g., RIPEMD-160, or to
truncate the output of a hash function such as SHA-256 or Whirlpool. Because the hashing
time is negligible in our experiments, this should not greatly impact our results.

6.3. Practical Short Signature Batch Verification 125

distinct signatures on 100-byte random message strings. (2) Conduct a timed
verification of this collection using the batch verifier. (3) Repeat steps (1, 2)
four times, averaging to obtain a mean timing. To obtain a view of batching
efficiency on collections of increasing size, we conducted the preceding test for
values of η ranging from 1 to approximately 400 signatures in intervals of 20.
Finally, to provide a baseline, we separately measured the performance of the
corresponding non-batched verification, by verifying 1000 signatures and divid-
ing to obtain the average verification time per signature. A high-level summary
of our results is presented in Figure 6.11.

Curve k R(G1) R(GT) SRSA Pairing Time

MNT160 6 160 bits 960 bits 960 bits 23.3 ms
MNT192 6 192 bits 1152 bits 1152 bits 33.2 ms
SS512 2 512 bits 1024 bits 957 bits 16.7 ms

Figure 6.10: Description of the elliptic curve parameters used in our experi-
ments. R(·) describes the approximate number of bits to optimally represent
a group element. SRSA is an estimate of ”RSA-equivalent” security derived via
the approach of Page et al. [155].

Signature Size (bits) Individual Verification Batched Verification∗

Scheme MNT160 MNT192 SS512 MNT160 MNT192 SS512 MNT160 MNT192 SS512

Signatures
BLS (single signer) 160 192 512 47.6 ms 77.8 ms 52.3 ms 2.28 ms 2.93 ms 32.42 ms
CHP 160 192 512 73.6 ms 119.0 ms 93.0 ms 26.16 ms 34.66 ms 34.50 ms
BLS cert + CHP sig 1280 1536 1536 121.2 ms† 196.8 ms† 145.3 ms† 28.44 ms† 37.59 ms† 66.92 ms†

Identity-Based Signatures
ChCh 320 384 1024 49.1 ms 79.7 ms 73.3 ms 3.93 ms 5.24 ms 59.45 ms
Waters 480 576 1536 91.2 ms 138.64 ms 61.1 ms 9.44 ms 11.49 ms 59.32 ms
Hess 1120 1344 1536 49.1 ms 79.0 ms 73.1 ms 6.70 ms 8.72 ms 55.94 ms

Anonymous Signatures
BBS (modified per §6.3.2.1) 2400 2880 3008 139.0 ms 218.3 ms 193.0 ms 24.80 ms 34.18 ms 198.03 ms
CYH, 2-member ring 480 576 1536 52.0 ms 77.0 ms 113.0 ms 6.03 ms 8.30 ms 105.69 ms
CYH, 20-member ring 3360 4032 10752 86.5 ms 126.8 ms 829.3 ms 43.93 ms 61.47 ms 932.66 ms
∗Average time per verification when batching 200 signatures.
†Values were derived by manually combining data from BLS and CHP tests.

Figure 6.11: Summary of experimental results. Timing results indicate verifica-
tion time per signature. With the exception of BLS, our experiments considered
signatures generated by distinct signers. The composite scheme “BLS cert +
CHP sig” describes a BLS-signed certificate on a CHP public key, along with a
CHP signature.

Curve Parameters. The selection of elliptic curve parameters impacts both
signature size and verification time. The two most important choices are the
size of the underlying finite field Fp, and the curve’s embedding degree k. Due
to the MOV attack, security is bounded by the size of the associated finite field
Fpk . Simultaneously, the representation of elements G1 requires approximately
|p| bits. Thus, most of the literature on short signatures recommends choosing

126 Chapter 6. Batch Verification of Signatures

a relatively small p, and a curve with a high value of k. (For example, a MNT
curve with |p| = 192 bits and k = 6 is thought to offer approximately the same
level of security as 1152-bit RSA [155].) The literature on short signatures
focuses mainly on signature size rather than verification time, so it is easy to
miss the fact that using such high-degree curves substantially increases the cost
of a pairing operation, and thus verification time. To incorporate these effects
into our results, we implemented our schemes using two high-degree (k = 6)
MNT curves with |p| equal to 160 bits and 192 bits. For completeness, we also
considered a |p|=512 bit supersingular curve with embedding degree k = 2, and
a subgroup G1 of size 2160. Figure 6.10 details the curve choices along with
relevant details such as pairing time and ”RSA-equivalent” security determined
using the approach of Page et al. [155].

6.3.3.1 Performance Results

We now present the results of our timing experiments. We first consider the two
standard (public-key) signature schemes, followed by three Identity-Based al-
ternatives. We then turn our attention to anonymous ring and group signatures.
Finally, we evaluate the performance of a ”resilient” batch verifier designed to
verify efficiently in the presence of invalid signatures.

Public-Key signatures. Figure 6.12 presents the results of our timing exper-
iments for the public-key BLS and CHP verifiers. Because the BLS signature
does not batch efficiently for messages created by distinct signers, we considered
these schemes in the combination suggested in Section 6.2.4, where BLS is used
for certificates which are created by a single master authority, and CHP is used
to sign the actual messages under users’ individual signing keys. Surprisingly,
the CHP batch verifier appears to be quite costly in the recommended MNT
curve setting. This result, which is not obvious from the high-level analysis of
Camenisch et al., stems from the requirement that user public keys be in the
G2 subgroup. This necessitates expensive point operations in the curve defined
over the extension field, which undoes some of the advantage gained by batch-
ing. However, even with this limitation, batching reduces the per-signature
verification cost to as little as 1/3 to 1/4 that of individual verification.

Identity-Based signatures. Figure 6.13 details the results of our timing ex-
periments for three Identity-Based signature schemes, ChCh, Waters and Hess.
(For comparison, our graphs also present the non-IBS approach employing CHP
signatures with BLS-signed public-key certificates.) In all experiments we con-
sider signatures generated by different signers. We observe that in contrast
with the public-key schemes, the IBSes batch quite efficiently in this case, at
least when implemented in MNT curves. In particular, the Waters scheme of-
fers surprisingly strong performance for a scheme not dependent on random
oracles.4 Note that in in our implementation of Waters, we first apply SHA1
to the message, and use the Waters hash parameter z = 5 which divides the

4However, it should be noted that Waters has a somewhat loose security reduction, and
may therefore require larger parameters in order to achieve security comparable to alternative
schemes.

6.3. Practical Short Signature Batch Verification 127

MNT160 MNT192 SS512

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

BLS (batched)
BLS (individual)

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

BLS (batched)
BLS (individual)

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

BLS (batched)
BLS (individual)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CHP (batched)
CHP (individual)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CHP (batched)
CHP (individual)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CHP (batched)
CHP (individual)

Figure 6.12: Public-Key Signature Schemes. Per-signature times were com-
puted by dividing total batch verification time by the number of signatures
verified. Note that in the BLS case, all signatures are formulated by the same
signer (as for certificate generation), while for CHP each signature was produced
by a different signer. Individual verification times are included for comparison.

resulting 160-bit digest into blocks of 32 bits (as proposed in [149]). Because
we selected these parameters, we did not bother to implement the first case of
the batch verifier, since the appropriate condition applies only for batches of
size η ≤ 3.

Anonymous signatures. Figure 6.14 details the results of our timing exper-
iments for two privacy-preserving signature schemes: the CYH ring signature,
and the modified BBS group signature. As is common with ring signatures,
in CYH both the signature size and verification time grow linearly with the
number of members in the ring. For our experiments we arbitrarily selected
two cases: (1) where all signatures are formed under a 2-member ring (useful
for applications such as lightweight email signing [1]), and (2) where all signa-
tures are formed using a 20-member ring.5 In contrast, both the signature size
and verification time of the BBS group signature are independent of the size of
the group. This makes group signatures like BBS significantly more practical
for applications such as vehicle communication networks, where the number of
signers might be quite large.

6.3.3.2 Batch Verification and Invalid Signatures

In Section 6.3.1.1, we discuss a general technique for dealing with invalid sig-
natures encountered when batching. When batch verification fails, this divide-
and-conquer approach recursively applies the batch verifier to individual halves

5Although the CYH batch verifier can easily batch signatures formed over differently-sized
rings, our experiments use a constant ring size for all signatures. However our results can be
considered representative of any signature collection where the mean ring size is 20.

128 Chapter 6. Batch Verification of Signatures

MNT160 MNT192

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

Waters
ChCh
Hess

CHP+BLS cert

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

Waters
ChCh
Hess

CHP+BLS cert

SS512

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

Waters
ChCh
Hess

CHP+BLS cert

Figure 6.13: Identity-Based Signature Schemes. Times represent total batch
verification time divided by the number of signatures verified. “CHP+BLS cert”
represents the batched public-key alternative using certificates, and is included
for comparison.

of the signature collection, until all invalid signatures have been located. To
save time when recursing, we compute products of the form

∏η
i=1 x

δi
i so that

partial products will be in place for each subset on which me might recurse.
We accomplish this by placing each xδii at the leaf of a binary tree and caching
intermediate products at each level. This requires no additional computation,
and total storage of approximately 2η group elements for each product to be
computed.

To evaluate the feasibility of this technique, we used it to implement a ”resi-
lient” batch verifier for the BLS signature scheme. This verifier accepts as input
a collection of signatures where some may be invalid, and outputs the index
of each invalid signature found. To evaluate batching performance, we first
generated a collection of 1024 valid signatures, and then randomly corrupted
a r-fraction by replacing them with random group elements. We repeated this
experiment for values of r ranging from 0 to 15% of the collection, collecting
multiple timings at each point, and averaging to obtain a mean verification
time.6 The results of the experiment are presented in Figure 6.15.

Our results indicate that batched verification of BLS signatures is preferable
to the naive individual verification algorithm even as the number of invalid
signatures exceeds 10% of the total size of the batch. Note also that the random
distribution of invalid signatures within the collection is nearly the worst-case

6Although our experiment does not re-order the signature collection, such a re-ordering
need not involve memory copies and could be performed at minimal additional cost.

Bibliography 129

MNT160 MNT192

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CYH (ring=20)
BBS

CYH (ring=2)

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e

Number of signatures

CYH (ring=20)
BBS

CYH (ring=2)

SS512

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 40 80 120 160 200

m
s

pe
r

si
gn

at
ur

e*

Number of signatures

CYH (ring=20)
BBS

CYH (ring=2)

∗Uses a different timescale.

Figure 6.14: Anonymous Signature Schemes. Times represent total batch veri-
fication time divided by the number of signatures verified. For the CYH ring
signature, we consider two distinct signature collections, one consisting of 2-
member rings, and another with only 20-member rings. The BBS group signa-
ture verification is independent of the group size.

for resilient verification. In many practical scenarios, invalid signatures might
be grouped together within the batch (e.g., if corruption is due to a burst of EM
interference). In this case, the verifier might achieve better results by omitting
the random shuffle step, or by using an alternative re-ordering that is more
appropriate for the setting.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
s

pe
r

si
gn

at
ur

e

% Invalid Signatures

Batched Verification
Individual Verification

Figure 6.15: BLS batch verification in the presence of invalid signatures (160-bit
MNT curve). A ”resilient” BLS batch verifier was applied to a collection of 1024
purported BLS signatures, where some percentage were randomly corrupted.
Per-signature times were computed by dividing the total verification time (in-
cluding identification of invalid signatures) by the total number of signatures
(1024), and averaging over multiple experimental runs.

Bibliography

[1] B. Adida, D. Chau, S. Hohenberger, and R. L. Rivest. Short signatures
from the Weil pairing. In R. D. Prisco and M. Yung, editors, International
Conference on Security in Communication Networks – SCN 2006, volume
4116 of Lecture Notes in Computer Science, pages 288–302. Springer,
2006.

[2] I. Altman. Environment and Social Behaviour. Brooks-Cole, 1975.

[3] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature
and encryption. In L. R. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science,
pages 83–107. Springer, 2002.

[4] R. Anderson and M. Kuhn. Tamper resistance: A cautionary note. In
USENIX Workshop on Electronic Commerce, pages 1–11. USENIX, 1996.

[5] R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices.
In B. Christianson, B. Crispo, T. M. A. Lomas, and M. Roe, editors,
Security Protocols Workshop, volume 1361 of Lecture Notes in Computer
Science, pages 125–136. Springer, 1998.

[6] R. J. Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons, 2001.

[7] R. J. Anderson, H. Chan, and A. Perrig. Key infection: Smart trust for
smart dust. In IEEE International Conference on Network Protocols –
ICNP 2004, pages 206–215. IEEE Computer Society, 2004.

[8] G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable RFID tags
via insubvertible encryption. In ACM Conference on Computer and Com-
munications Security – CCS 2005, pages 92–101. ACM, 2005.

[9] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Prac-
tical group signatures without random oracles, 2005. Cryptology ePrint
Archive, Report 2005/385.

[10] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and
provably secure coalition-resistant group signature scheme. In M. Bellare,
editor, Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture
Notes in Computer Science, pages 255–270. Springer, 2000.

131

132 Bibliography

[11] M. H. Au, J. K. Liu, T. H. Yuen, and D. S. Wong. ID-based ring signa-
ture scheme secure in the standard model. In H. Yoshiura, K. Sakurai,
K. Rannenberg, Y. Murayama, and S. Kawamura, editors, Advances in
Information and Computer Security – IWSEC 2006, volume 4266 of Lec-
ture Notes in Computer Science, pages 1–16. Springer, 2006.

[12] G. Avoine. RFID lounge - security and privacy. http://lasecwww.epfl.
ch/~gavoine/rfid/.

[13] G. Avoine. Adversarial model for radio frequency identification, 2005.
Cryptology ePrint Archive: Report 2005/049.

[14] G. Avoine, E. Dysli, and P. Oechslin. Reducing time complexity in RFID
systems. In B. Preneel and S. E. Tavares, editors, Selected Areas in Cryp-
tography – SAC 2005, volume 3897 of Lecture Notes in Computer Science,
pages 291–306. Springer, 2005.

[15] G. Avoine and P. Oechslin. A scalable and provably secure hash-based
RFID protocol. In IEEE PerCom Workshops 2005, pages 110–114. IEEE
Computer Society, 2005.

[16] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong. Talking to
strangers: Authentication in ad-hoc wireless networks. In Network and
Distributed System Security Symposium – NDSS 2002. The Internet So-
ciety, 2002.

[17] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally compos-
able protocols with relaxed set-up assumptions. In 45th Symposium on
Foundations of Computer Science (FOCS), pages 186–195. IEEE Com-
puter Society, 2004.

[18] J. Bardram, R. E. Kjær, and M. Ø. Pedersen. Context-aware user authen-
tication - supporting proximity-based login in pervasive computing. In
A. K. Dey, A. Schmidt, and J. F. McCarthy, editors, Ubiquitous Comput-
ing – UbiComp 2003, volume 2864 of Lecture Notes in Computer Science,
pages 107–123. Springer, 2003.

[19] J. E. Bardram. The trouble with login - on usability and com-
puter security in pervasive computing. Technical report, Center
for Pervasive Computing, Aarhus, Denmark, 2003. Available from
http://www.pervasive.dk/publications.

[20] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop sig-
nature schemes without trees. In W. Fumy, editor, Advances in Crypto-
logy – EUROCRYPT 1997, volume 1233 of Lecture Notes in Computer
Science, pages 480–494. Springer, 1997.

[21] K. Barr and K. Asanović. Energy aware lossless data compression. In
Mobile Systems, Applications, and Services – MobiSys 2003, pages 231–
244. USENIX, 2003.

Bibliography 133

[22] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and
I. Verbauwhede. An elliptic curve processor suitable for RFID-tags, 2006.
Cryptology ePrint Archive, Report 2006/227.

[23] M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular
exponentiation and digital signatures. In K. Nyberg, editor, Advances
in Cryptology – EUROCRYPT 1998, volume 1403 of Lecture Notes in
Computer Science, pages 236–250. Springer, 1998.

[24] M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F.
Brickell, editor, Advances in Cryptology – CRYPTO 1992, volume 740 of
Lecture Notes in Computer Science, pages 390–420. Springer, 1992.

[25] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group sig-
natures: Formal definitions, simplified requirements, and a construction
based on general assumptions. In E. Biham, editor, Advances in Crypto-
logy – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 614–629. Springer, 2003.

[26] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The
case of dynamic groups. In A. J. Menezes, editor, Topics in Cryptology –
CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages
136–153. Springer, 2005.

[27] J. C. Benaloh and M. de Mare. One-way accumulators: A decentral-
ized alternative to digital signatures. In T. Helleseth, editor, Advances in
Cryptology – EUROCRYPT 1993, volume 765 of Lecture Notes in Com-
puter Science, pages 274–285. Springer, 1994.

[28] F. Bennett, T. Richardson, and A. Harter. Teleporting - making ap-
plications mobile. In IEEE Mobile Computer Systems and Applications
Workshop, pages 82–84. IEEE Computer Society, 1994.

[29] E. Biham, O. Dunkelman, S. Indesteege, N. Keller, and B. Preneel. How
to steal cars - a practical attack on keeloq. Rump Session, Crypto, 2007.

[30] R. Bird, I. S. Gopal, A. Herzberg, P. A. Janson, S. Kutten, R. Molva, and
M. Yung. Systematic design of two-party authentication protocols. In
J. Feigenbaum, editor, Advances in Cryptology – CRYPTO 1991, volume
576 of Lecture Notes in Computer Science, pages 44–61. Springer, 1991.

[31] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based en-
cryption without random oracles. In C. Cachin and J. Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 223–238. Springer, 2004.

[32] D. Boneh and X. Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177,
2008.

134 Bibliography

[33] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In
M. Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 41–55. Springer, 2004.

[34] D. Boneh and M. K. Franklin. Identity-based encryption from the
Weil pairing. In J. Kilian, editor, Advances in Cryptology – CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229.
Springer, 2001.

[35] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In E. Biham, editor, Advances
in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 416–432. Springer, 2003.

[36] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. In C. Boyd, editor, Advances in Cryptology – ASIACRYPT
2001, volume 2248 of Lecture Notes in Computer Science, pages 514–532.
Springer, 2001.

[37] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. Journal of Cryptology, 17(4):297–319, 2004.

[38] S. C. Bono, M. Green, A. Stubblefield, A. Juels, A. D. Rubin, and
M. Szydlo. Security analysis of a cryptographically-enabled RFID device.
In USENIX Security Symposium – SSYM 2005, pages 1–16. USENIX,
2005.

[39] F. Boudot. Efficient proofs that a committed number lies in an interval. In
B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science, pages 431–444. Springer,
2000.

[40] C. Boyd and C. Pavlovski. Attacking and repairing batch verification
schemes. In T. Okamoto, editor, Advances in Cryptology – ASIACRYPT
2000, volume 1976 of Lecture Notes in Computer Science, pages 58–71.
Springer, 2000.

[41] X. Boyen. Mesh signatures: How to leak a secret with unwitting and
unwilling participants. In M. Naor, editor, Advances in Cryptology –
EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science,
pages 210–227. Springer, 2007.

[42] X. Boyen and B. Waters. Compact group signatures without random
oracles. In S. Vaudenay, editor, Advances in Cryptology – EUROCRYPT
2006, volume 4004 of Lecture Notes in Computer Science, pages 427–444.
Springer, 2006.

[43] X. Boyen and B. Waters. Full-domain subgroup hiding and constant-
size group signatures. In T. Okamoto and X. Wang, editors, Public Key
Cryptography – PKC 2007, volume 4450 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2007.

Bibliography 135

[44] M. Boyle. A shared vocabulary for privacy. UbiComp 2003: Privacy
Workshop, Oct 2003.

[45] S. Brands. Untraceable off-line cash in wallets with observers. In D. R.
Stinson, editor, Advances in Cryptology – CRYPTO 1993, volume 773 of
Lecture Notes in Computer Science, pages 302–318. Springer, 1993.

[46] S. Brands. Rethinking Public Key Infrastructure and Digital Certificates
– Building in Privacy. PhD Thesis, Eindhoven Inst. of Tech. The Neth-
erlands, 1999.

[47] S. Brands and D. Chaum. Distance bounding protocols. In T. Helle-
seth, editor, Advances in Cryptology – EUROCRYPT 1993, volume 765
of Lecture Notes in Computer Science, pages 344–359. Springer, 1993.

[48] J. Bringer, H. Chabanne, and E. Dottax. HB++: A lightweight authen-
tication protocol secure against some attacks. In IEEE Security, Privacy
and Trust in Pervasive and Ubiquitous Computing – SecPerU 2006, pages
28–33. IEEE Computer Society, 2006.

[49] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easyliv-
ing: Technologies for intelligent environments. In P. Thomas and H. W.
Gellersen, editors, Handheld and Ubiquitous Computing – HUC 2000,
volume 1927 of Lecture Notes in Computer Science, pages 12–29. Springer,
2000.

[50] M. Burmester, B. de Medeiros, and R. Motta. Robust, anonymous
RFID authentication with constant key-lookup, 2007. Cryptology ePrint
Archive: Report 2007/402.

[51] M. Burmester, T. van Le, and B. de Medeiros. Provably secure ubiquitous
systems: Universally composable RFID authentication protocols, 2006.
Cryptology ePrint Archive: Report 2006/131.

[52] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM
Transactions on Computer Systems – TOCS 1990, 8(1):18–36, 1990.

[53] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and
M. Meyerovich. How to win the clonewars: Efficient periodic n-times
anonymous authentication. In ACM Conference on Computer and Com-
munications Security – CCS 2006, pages 201–210. ACM, 2006.

[54] J. Camenisch, S. Hohenberger, and M. Ø. Pedersen. Batch verification of
short signatures. In M. Naor, editor, Advances in Cryptology – EURO-
CRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages
246–263. Springer, 2007.

[55] J. Camenisch, S. Hohenberger, and M. Ø. Pedersen. Batch verification of
short signatures, 2007. Cryptology ePrint Archive: Report 2007/172.

136 Bibliography

[56] J. Camenisch and A. Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revoca-
tion. In B. Pfitzmann, editor, Advances in Cryptology – EUROCRYPT
2001, volume 2045 of Lecture Notes in Computer Science, pages 93–118.
Springer, 2001.

[57] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In M. Yung, editor,
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes
in Computer Science, pages 61–76. Springer, 2002.

[58] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In M. K. Franklin, editor, Advances in
Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 56–72. Springer, 2004.

[59] J. Camenisch and M. Stadler. Efficient group signature schemes for large
groups. In B. S. K. Jr., editor, Advances in Cryptology – CRYPTO
1997, volume 1294 of Lecture Notes in Computer Science, pages 410–424.
Springer, 1997.

[60] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited. In ACM Symposium on Theory of Computing – STOC 1998,
pages 209–218. ACM, 1998.

[61] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption
scheme. In E. Biham, editor, Advances in Cryptology – EUROCRYPT
2003, volume 2656 of Lecture Notes in Computer Science, pages 255–271.
Springer, 2003.

[62] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Univer-
sally composable password-based key exchange. In C. Cachin and J. Ca-
menisch, editors, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 404–421. Springer,
2005.

[63] T. Cao, D. Lin, and R. Xue. Security analysis of some batch verify-
ing signatures from pairings. International Journal of Network Security,
3(2):138–143, 2006.

[64] Car2Car Communication Consortium. http://car-to-car.org.

[65] J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-
Hellman groups. In Y. Desmedt, editor, Public Key Cryptography – PKC
2003, Lecture Notes in Computer Science, pages 18–30. Springer, 2003.

[66] S. Chatterjee and P. Sarkar. Trading time for space: Towards an efficient
IBE scheme with short(er) public parameters in the standard model. In
D. Won and S. Kim, editors, Information Security and Cryptology – ICISC
2005, volume 3935 of Lecture Notes in Computer Science, pages 424–440.
Springer, 2005.

Bibliography 137

[67] S. Chatterjee and P. Sarkar. HIBE with short public parameters without
random oracle. In X. Lai, editor, Advances in Cryptology – ASIACRYPT
2006, volume 4284 of Lecture Notes in Computer Science, pages 145–160.
Springer, 2006.

[68] D. Chaum. Security without identification: transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030–1044,
1985.

[69] D. Chaum and J.-H. Evertse. A secure and privacy-protecting protocol
for transmitting personal information between organizations. In A. M.
Odlyzko, editor, Advances in Cryptology – CRYPTO 1986, volume 263 of
Lecture Notes in Computer Science, pages 118–167. Springer, 1986.

[70] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Gold-
wasser, editor, Advances in Cryptology – CRYPTO 1988, volume 403 of
Lecture Notes in Computer Science, pages 319–327. Springer, 1990.

[71] D. Chaum and E. van Heyst. Group signatures. In S. Vaudenay, editor,
Advances in Cryptology – EUROCRYPT 1991, volume 547 of Lecture
Notes in Computer Science, pages 257–265. Springer, 1991.

[72] L. Chen, Z. Cheng, and N. P. Smart. Identity-based key agreement proto-
cols from pairings. Journal of Information Security, 6(4):213–241, 2007.

[73] J. H. Cheon, Y. Kim, and H. J. Yoon. A new ID-based signature with
batch verification, 2004. Cryptology ePrint Archive: Report 2004/131.

[74] H. Cheung. How to: Building a bluesniper rifle. http://www.tomsguide.
com/us/how-to-bluesniper-pt1,review-408.html, 2005.

[75] S. S. M. Chow, S.-M. Yiu, and L. C. Hui. Efficient identity based ring
signature. In J. Ioannidis, A. D. Keromytis, and M. Yung, editors, Applied
Cryptography and Network Security – ACNS 2005, volume 3531 of Lecture
Notes in Computer Science, pages 499–512. Springer, 2005.

[76] H. B. Christensen and J. Bardram. Supporting human activities - explor-
ing activity-centered computing. In G. Borriello and L. E. Holmquist,
editors, Ubiquitous Computing – UbiComp 2002, volume 2498 of Lecture
Notes in Computer Science, pages 107–116. Springer, 2002.

[77] M. D. Corner and B. D. Noble. Zero-interaction authentication. In Mobile
Computing and Networking – MobiCom 2002, pages 1–11. ACM, 2002.

[78] R. Cramer and I. Damg̊ard. Fast and secure immunization against ad-
aptive man-in-the-middle impersonation. In W. Fumy, editor, Advances
in Cryptology – EUROCRYPT 1997, volume 1233 of Lecture Notes in
Computer Science, pages 75–87. Springer, 1997.

[79] I. Damg̊ard. Payment systems and credential mechanism with provable
security against abuse by individuals. In S. Goldwasser, editor, Advances

138 Bibliography

in Cryptology – CRYPTO 1988, volume 403 of Lecture Notes in Computer
Science, pages 328–335. Springer, 1990.

[80] I. Damg̊ard, K. Dupont, and M. Ø. Pedersen. Unclonable group identific-
ation. In S. Vaudenay, editor, Advances in Cryptology – EUROCRYPT
2006, volume 4004 of Lecture Notes in Computer Science, pages 555–572.
Springer, 2006.

[81] I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment
scheme based on groups with hidden order. In Y. Zheng, editor, Ad-
vances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 125–142. Springer, 2002.

[82] I. Damg̊ard and M. Ø. Pedersen. RFID security: Tradeoffs between secur-
ity and efficiency. In T. Malkin, editor, Topics in Cryptology – CT-RSA
2008, volume 4964 of Lecture Notes in Computer Science, pages 318–332.
Springer, 2008.

[83] D. E. Denning and P. D. MacDoran. Location-based authentication:
Grounding cyberspace for better security. Computer Fraud and Secur-
ity, Feb 1996.

[84] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22:644–654, 1976.

[85] P. Dourish, R. E. Grinter, J. D. de la Flor, and M. Joseph. Security in
the wild: User strategies for managing security as an everyday, practical
problem. Personal and Ubiquitous Computing, 8(6):391–401, 2004.

[86] P. Droz, C. GÃ1
4 lcÃ1

4 , and R. Haas. WANTED: A theft-deterrent solution
for the pervasive computing world. In IEEE International Conference on
Computer Communications and Networks – ICCCN 2000, pages 374–379.
IEEE Computer Society, 2000.

[87] Ducatel, Bogdanowicz, Scapolo, Leijten, and Burgelman. Scenarios for
ambient intelligence in 2010, Feb 2001.

[88] Ensure technologies. http://www.ensuretech.com.

[89] evgeniy Dodis and A. Yampolskiy. A verifiable random function with
short proofs and keys. In S. Vaudenay, editor, Public Key Cryptography
– PKC 2005, volume 3386 of Lecture Notes in Computer Science, pages
416–431. Springer, 2005.

[90] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity.
Journal of Cryptology, 1(2):77–94, 1988.

[91] A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen. Prac-
tical short signature batch verification, 2008. Cryptology ePrint Archive:
Report 2008/015.

Bibliography 139

[92] A. Fiat. Batch RSA. In G. Brassard, editor, Advances in Cryptology –
CRYPTO 1989, volume 435 of Lecture Notes in Computer Science, pages
175–185. Springer, 1989.

[93] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In A. M. Odlyzko, editor, Advances
in Cryptology – CRYPTO 1986, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986.

[94] M. Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In V. Shoup, editor, Advances in Cryptology –
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
152–168. Springer, 2005.

[95] M. P. Fossorier, M. J. Mihaljević, H. Imai, Y. Cui, , and K. Matsuura.
A novel algorithm for solving the LPN problem and its application to
security evaluation of the HB protocol for RFID authentication, 2006.
Cryptology ePrint Archive: Report 2006/197.

[96] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for crypto-
graphers, 2006. Cryptology ePrint Archive: Report 2006/165.

[97] R. Gavison. Privacy and the limits of the law. In Computers, Ethics, and
Social Values, pages 332–351. Prentice Hall, 1995.

[98] R. Gennaro and P. Rohatgi. How to sign digital streams. In B. S. K. Jr.,
editor, Advances in Cryptology – CRYPTO 1997, volume 1294 of Lecture
Notes in Computer Science, pages 180–197. Springer, 1997.

[99] C. Gentry. How to compress rabin ciphertexts and signatures (and
more). In M. K. Franklin, editor, Advances in Cryptology – CRYPTO
2004, volume 3152 of Lecture Notes in Computer Science, pages 179–200.
Springer, 2004.

[100] C. Gentry and Z. Ramzan. Identity-based aggregate signatures. In
M. Yung, editor, Public Key Cryptography – PKC 2006, volume 3958
of Lecture Notes in Computer Science, pages 257–273. Springer, 2006.

[101] H. Gilbert, M. Robshaw, and H. Sibert. An active attack against HB+ -
a provably secure lightweight authentication protocol, 2007. Cryptology
ePrint Archive: Report 2005/237.

[102] H. Gilbert, M. J. Robshaw, and Y. Seurin. HB#: Increasing the security
and efficiency of hb+, 2008. Cryptology ePrint Archive: Report 2008/028.

[103] O. Goldreich, S. Goldwasser, and S. Micali. How to construct ran-
dom functions. In 25th Symposium on Foundations of Computer Science
(FOCS), pages 464–479. IEEE Computer Society, 1984.

[104] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems.
Journal of ACM, 38(3):691–729, 1991.

140 Bibliography

[105] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In ACM Symposium on
Theory of Computing – STOC 1985, pages 291–304. ACM, 1985.

[106] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Com-
puting, 17(2):281–308, 1988.

[107] R. Granger and N. P. Smart. On computing products of pairings, 2006.
Cryptology ePrint Archive: Report 2006/172.

[108] G. P. Hancke and M. G. Kuhn. An RFID distance bounding protocol.
In IEEE Security and Privacy for Emerging Areas in Communications
Networks – SECURECOMM 2005, pages 67–73. IEEE Computer Society,
2005.

[109] L. Harn. Batch verifying multiple DSA digital signatures. Electronics
Letters, 34(9):870–871, 1998.

[110] L. Harn. Batch verifying multiple RSA digital signatures. Electronics
Letters, 34(12):1219–1220, 1998.

[111] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy
of a context-aware application. In Mobile Computing and Networking –
MobiCom 1999, pages 59–68. ACM, 1999.

[112] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy
of a context-aware application. In ACM/IEEE Conference on Mobile
Computing and Networking – MOBICOM 1999, pages 59–68. ACM, 1999.

[113] M. E. Hellman. A cryptanalytic time-memory tradeoff. IEEE Transac-
tions on Information Theory, 26(6):401–406, 1980.

[114] F. Hess. Efficient identity based signature schemes based on pairings.
In K. Nyberg and H. M. Heys, editors, Selected Areas in Cryptography
– SAC 2002, volume 2595 of Lecture Notes in Computer Science, pages
310–324. Springer, 2002.

[115] N. J. Hopper and M. Blum. Secure human identification protocols. In
C. Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume
2248 of Lecture Notes in Computer Science, pages 52–66. Springer, 2001.

[116] F. Hoshino, M. Abe, and T. Kobayashi. Lenient/strict batch verification
in several groups. In G. I. Davida and Y. Frankel, editors, Information
Security, Lecture Notes in Computer Science, pages 81–94. Springer, 2001.

[117] M.-S. Hwang, C.-C. Lee, and Y.-L. Tang. Two simple batch verifying
multiple digital signatures. In S. Qing, T. Okamoto, and J. Zhou, editors,
Information and Communications Security – ICICS 2001, Lecture Notes
in Computer Science, pages 233–237. Springer, 2001.

Bibliography 141

[118] M.-S. Hwang, I.-C. Lin, and K.-F. Hwang. Cryptanalysis of the batch veri-
fying multiple RSA digital signatures. Informatica, Lithuanian Academy
of Sciences, 11(1):15–19, 2000.

[119] IBM JCOP. http://www.zurich.ibm.com/csc/infosec/smartcard.html.

[120] IEEE. 5.9 GHz dedicated short range communications. http://grouper.
ieee.org/groups/scc32/dsrc.

[121] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs
and their applications. In U. Maurer, editor, Advances in Cryptology –
EUROCRYPT 1996, volume 1070 of Lecture Notes in Computer Science,
pages 143–154. Springer, 1996.

[122] A. Juels. RFID security and privacy: a research survey. IEEE Journal
on Selected Areas in Communications, 24(2):381–394, 2006.

[123] A. Juels, R. L. Rivest, and M. Szydlo. The blocker tag: Selective blocking
of RFID tags for consumer privacy. In ACM Conference on Computer and
Communications Security – CCS 2003, pages 103–111. ACM, 2003.

[124] A. Juels and S. Weis. Authenticating pervasive devices with human
protocols. In V. Shoup, editor, Advances in Cryptology – CRYPTO
2005, volume 3126 of Lecture Notes in Computer Science, pages 293–308.
Springer, 2005.

[125] A. Juels and S. A. Weis. Defining strong privacy for RFID. In IEEE
PerCom Workshops 2007, pages 342–347. IEEE Computer Society, 2007.

[126] B. Kaliski. PKCS #5: Password-based cryptography specification version
2.0. RFC 2898 (Proposed Standard), Sep 2000.

[127] M. Kanellos. New Wi-Fi distance record: 382 kilometers. http://www.

news.com/8301-10784_3-9730708-7.html, 2007.

[128] A. Kiayias and M. Yung. Group signatures with efficient concurrent join.
In C. Cachin and J. Camenisch, editors, Advances in Cryptology – EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
198–214. Springer, 2005.

[129] J. Kilian and E. Petrank. Identity escrow. In H. Krawczyk, editor, Ad-
vances in Cryptology – CRYPTO 1998, volume 1462 of Lecture Notes in
Computer Science, pages 169–187. Springer, 1998.

[130] N. Koblitz and A. Menezes. Pairing-based cryptography at high security
levels. In N. P. Smart, editor, IMA International Conference – Cryp-
tography and Coding 2005, volume 3796 of Lecture Notes in Computer
Science, pages 13–36. Springer, 2005.

[131] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for
message authentication. RFC 2104 (Proposed Standard), Feb 1997.

142 Bibliography

[132] C.-S. Laih and S.-M. Yen. Improved digital signature suitable for batch
verification. IEEE Transactions on Computers, 44(7):957–959, 1995.

[133] O. Landsiedel, K. Wehrle, and S. Götz. Accurate prediction of power
consumption in sensor networks. In IEEE Embedded Networked Sensors
– EmNets 2005, pages 37–44. IEEE Computer Society, 2005.

[134] L. Law and B. J. Matt. Finding invalid signatures in pairing-based
batches. In S. D. Galbraith, editor, IMA International Conference –
Cryptography and Coding 2007, volume 4887 of Lecture Notes in Com-
puter Science, pages 34–53. Springer, 2007.

[135] S. Lederer, J. Mankoff, and A. K. Dey. Towards a deconstruction of the
privacy space. UbiComp 2003: Privacy Workshop, Oct 2003.

[136] S. Lee, S. Cho, J. Choi, and Y. Cho. Efficient identification of bad signa-
tures in RSA-type batch signature. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 89-A(1):74–80,
2006.

[137] C. Lim and P. Lee. Security of interactive DSA batch verification. In
Electronics Letters, volume 30(19), pages 1592–1593, 1994.

[138] C. H. Lim. Efficient multi-exponentation and application to batch verifi-
ation of digital signatures, 2000. http://dasan.sejong.ac.kr/~chlim/
english_pub.html.

[139] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequen-
tial aggregate signatures and multisignatures without random oracles.
In S. Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 465–485.
Springer, 2006.

[140] A. Lysyanskaya. Signature Schemes and Applications to Cryptographic
Protocol Design. PhD Thesis, Massachusetts Institute of Technology,
Cambridge, Massachusetts, September 2002.

[141] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems.
In C. Adams and H. Heys, editors, Selected Areas in Cryptography – SAC
1999, volume 1758 of Lecture Notes in Computer Science, pages 184–199.
Springer, 1999.

[142] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos. Multicast authen-
tication in fully adversarial networks. In IEEE Symposium on Security
and Privacy – S&P 2004. IEEE Computer Society, 2004.

[143] A. Menezes, S. Vanstone, and T. Okamoto. Reducing elliptic curve log-
arithms to logarithms in a finite field. In ACM Symposium on Theory of
Computing – STOC 1991, pages 80–89. ACM, 1991.

Bibliography 143

[144] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In
Foundations of Computer Science – FOCS 1999, pages 120–130. IEEE
Computer Society, 1999.

[145] Ministeriet for Videnskab, Teknologi og Udvikling. Teknologisk Fremsyn
– Pervasive Computing, Jan 2003.

[146] D. Molnar, A. Soppera, and D. Wagner. A scalable, delegatable pseud-
onym protocol enabling ownership transfer of RFID tags. In B. Pren-
eel and S. E. Tavares, editors, Selected Areas in Cryptography – SAC
2005, volume 3897 of Lecture Notes in Computer Science, pages 276–290.
Springer, 2005.

[147] J. Monnerat and S. Vaudenay. Undeniable signatures based on characters:
How to sign with one bit. In F. Bao, R. H. Deng, and J. Zhou, editors,
Public Key Cryptography – PKC 2004, volume 2947 of Lecture Notes in
Computer Science, pages 69–85. Springer, 2004.

[148] J. Monnerat and S. Vaudenay. Short 2-move undeniable signatures.
In P. Q. Nguyen, editor, Progress in Cryptology – VIETCRYPT 2006,
volume 4341 of Lecture Notes in Computer Science, pages 19–36. Springer,
2006.

[149] D. Naccache. Secure and practical identity-based encryption, 2005.
Cryptology ePrint Archive: Report 2005/369.

[150] D. Naccache, D. M’Räıhi, S. Vaudenay, and D. Raphaeli. Can DSA be
improved? Complexity trade-offs with the digital signature standard.
In A. D. Santis, editor, Advances in Cryptology – EUROCRYPT 1994,
volume 950 of Lecture Notes in Computer Science, pages 77–85. Springer,
1994.

[151] K. Nagel, C. D. Kidd, T. O’Connell, A. Dey, and G. D. Abowd. The family
intercom: Developing a context-aware audio communication system. In
G. D. Abowd, B. Brumitt, and S. Shafer, editors, Ubiquitous Computing –
UbiComp 2001, volume 2201 of Lecture Notes in Computer Science, pages
176–183. Springer, 2001.

[152] M. Naor and O. Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In Foundations of Computer Science – FOCS
1997, pages 458–467. IEEE Computer Society, 1997.

[153] Y. Nohara, S. Inoue, K. Baba, and H. Yasuura. Quantitative evaluation
of unlinkable id matching schemes. In ACM Workshop on Privacy in the
Electronic Society – WPES 2005, pages 55–60. ACM, 2005.

[154] M. Ohkubo, K. Suzuki, and S. Kinoshita. Efficient hash-chain based RFID
privacy protection scheme. UbiComp 2004: Privacy Workshop, Sep 2004.

[155] D. Page, N. Smart, and F. Vercauteren. A comparison of MNT curves and
supersingular curves. Applicable Algebra in Engineering, Communication
and Computing, 17(5):379–392, 2006.

144 Bibliography

[156] J. I. Pagter and M. Ø. Pedersen. The all-or-nothing anti-theft policy -
theft protection for pervasive computing. In IEEE Advanced Informa-
tion Networking and Applications – AINA 2007, pages 626–631. IEEE
Computer Society, 2007.

[157] J. I. Pagter and M. G. Petersen. A sense of security in pervasive computing
- is the light on when the refrigerator door is closed? In S. Dietrich and
R. Dhamija, editors, Financial Cryptography 2007, volume 4886 of Lecture
Notes in Computer Science, pages 383–388. Springer, 2007.

[158] L. Palen and P. Dourish. Unpacking ”privacy” for a networked world.
In Human factors in computing systems – SIGCHI 2003, pages 129–136.
ACM, 2003.

[159] J. Pastuszak, D. Michatek, J. Pieprzyk, and J. Seberry. Identification of
bad signatures in batches. In H. Imai and Y. Zheng, editors, Public Key
Cryptography – PKC 2000, volume 1751 of Lecture Notes in Computer
Science, pages 28–45. Springer, 2000.

[160] M. Ø. Pedersen, J. I. Pagter, and T. P. Pedersen. Pervasive computing:
IT security and privacy, Nov 2004.

[161] A. Perrig, R. Canetti, D. X. Song, and J. D. Tygar. Efficient and secure
source authentication for multicast. In Network and Distributed System
Security Symposium – NDSS 2001. The Internet Society, 2001.

[162] O. Perron. Bemerkungen über die verteilung der quadratischen reste.
Mathematische Zeitschrift, 56(2):122–130, 1952.

[163] Pointsec. Taxis hailed as black hole for lost cell phones and PDAs, as
confidential data gets taken for a ride. http://www.checkpoint.com/

press/pointsec/2005/01-24a.html, 2006.

[164] M. O. Rabin. Digitalized signatures and public-key functions as intract-
able as factorization. Technical report, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, 1979.

[165] M. Raya and J.-P. Hubaux. Securing vehicular ad hoc networks. Journal
of Computer Security, 15(1):39–68, 2007.

[166] RFID Guardian. http://www.rfidguardian.org/.

[167] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd,
editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lec-
ture Notes in Computer Science, pages 552–565. Springer, 2001.

[168] D. M. Russell, C. Drews, and A. Sue. Social aspects of using large public
interactive displays for collaboration. In G. Borriello and L. E. Holmquist,
editors, Ubiquitous Computing – UbiComp 2002, volume 2498 of Lecture
Notes in Computer Science, pages 229–236. Springer, 2002.

Bibliography 145

[169] D. M. Russell and R. Gossweiler. On the design of personal & communal
large information scale appliances. In G. D. Abowd, B. Brumitt, and
S. Shafer, editors, Ubiquitous Computing – UbiComp 2001, volume 2201
of Lecture Notes in Computer Science, pages 354–361. Springer, 2001.

[170] B. RÃ¶ssler. The Value of Privacy. Polity Press, 2005.

[171] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing.
In Symposium on Cryptography and Information Security – SCIS 2000,
2000.

[172] B. Schneier. Secrets and Lies: Digital Security in a Networked World.
John Wiley & Sons, 2000.

[173] C.-P. Schnorr. Efficient identification and signatures for smart cards. In
G. Brassard, editor, Advances in Cryptology – CRYPTO 1989, volume 435
of Lecture Notes in Computer Science, pages 239–252. Springer, 1989.

[174] M. Scott. Multiprecision integer and rational arithmetic C/C++ library
(MIRACL). Published by Shamus Software Ltd., http://www.shamus.
ie/.

[175] SeVeCom. Security on the road. http://www.sevecom.org.

[176] Z. Shao. Enhanced aggregate signatures from pairings. In M. Yung,
editor, Information Security and Cryptology – CISC 2005, volume 3822
of Lecture Notes in Computer Science, pages 140–149. Springer, 2005.

[177] D. K. Smetters and R. E. Grinter. Moving from the design of usable
security technologies to the design of useful secure applications. In New
Security Paradigms Workshop - NSPW 2002, pages 82–89. ACM, 2002.

[178] M. T. Smith. Smart cards: Integrating for portable complexity. IEEE
Computer, 31(8):110–115, 1998.

[179] F. Stajano and R. Anderson. The resurrecting duckling: Security issues
for ad-hoc wireless networks. In B. Christianson, B. Crispo, J. A. Mal-
colm, and M. Roe, editors, Security Protocols Workshop, volume 1796 of
Lecture Notes in Computer Science, pages 172–194. Springer, 1999.

[180] M. Stanek. Attacking LCCC batch verification of RSA signatures, 2006.
Cryptology ePrint Archive: Report 2006/111.

[181] M. Steil. 17 mistakes microsoft made in the xbox security sys-
tem. http://www.xbox-linux.org/wiki/17_Mistakes_Microsoft_

Made_in_the_Xbox_Security_System, 2005.

[182] B. Stone. Pinch my ride. http://www.wired.com/wired/archive/14.

08/carkey.html, 2006.

[183] M. Tompa and H. Woll. Random self-reducibility and zero knowledge in-
teractive proofs of possession of information. In Foundations of Computer
Science – FOCS 1987, pages 472–482. IEEE Computer Society, 1987.

146 Bibliography

[184] J. Trevor, D. M. Hilbert, and B. N. Schilit. Issues in personalizing shared
ubiquitous devices. In G. Borriello and L. E. Holmquist, editors, Ubi-
quitous Computing – UbiComp 2002, volume 2498 of Lecture Notes in
Computer Science, pages 56–72. Springer, 2002.

[185] G. Tsudik. YA-TRAP: Yet another trivial RFID authentication protocol.
In IEEE PerCom Workshops 2006, pages 640–643. IEEE Computer So-
ciety, 2006.

[186] J. Viega and D. McGrew. The use of galois/counter mode (GCM) in IPsec
encapsulating security payload (ESP). RFC 4106 (Proposed Standard),
Jun 2005.

[187] R. Want, A. Hopper, V. FalcÃ£o, and J. Gibbons. The active badge
location system. ACM Transactions on Information Systems – TOIS
1992, 10(1):91–102, 1992.

[188] A. Ward, A. Jones, and A. Hopper. A new location technique for the active
office. IEEE Personal Communication Magazine, 4(5):42–47, 1997.

[189] B. Waters. Efficient identity-based encryption without random oracles. In
R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 320–329. Springer,
2005.

[190] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels. ecurity and pri-
vacy aspects of low-cost radio frequency identification systems. In B. Pren-
eel and S. E. Tavares, editors, Security in Pervasive Computing – SPC
2003, volume 2802 of Lecture Notes in Computer Science, pages 201–212.
Springer, 2003.

[191] A. Whitten and J. Tygar. Why johnny can’t encrypt: A usability eval-
uation of PGP 5.0. In USENIX Security Symposium, pages 169–184.
USENIX, 1999.

[192] H. Yoon, J. H. Cheon, and Y. Kim. Batch verifications with ID-based
signatures. In C. Park and S. Chee, editors, Information Security and
Cryptology – ICISC 2004, Lecture Notes in Computer Science, pages 233–
248. Springer, 2004.

[193] F. Zhang and K. Kim. Efficient ID-based blind signature and proxy sig-
nature from bilinear pairings. In R. Safavi-Naini and J. Seberry, edit-
ors, Information Security and Privacy, Australasian Conference – ACISP
2003, volume 2727 of Lecture Notes in Computer Science, pages 312–323.
Springer, 2003.

[194] F. Zhang, R. Safavi-Naini, and W. Susilo. Efficient verifiably encrypted
signature and partially blind signature from bilinear pairings. In T. Jo-
hansson and S. Maitra, editors, Progress in Cryptology – INDOCRYPT
2003, volume 2904 of Lecture Notes in Computer Science, pages 191–204.
Springer, 2003.

